A Kaleidoscopic Approach to Surround Geometry and Reflectance Acquisition
We describe a system for acquiring reflectance fields
of objects without moving parts and without a massively
parallel hardware setup. Our system consists of a set of
planar mirrors which serve to multiply a single camera and
a single projector into a multitude of virtual counterparts.
Using this arrangement, we can acquire reflectance fields
with an average angular sampling rate of about 120+
view/light pairs per surface point. The mirror system allows
for freely programmable illumination with full directional
coverage. We employ this setup to realize a 3D acquisition
system that employs structured illumination to capture the
unknown object geometry, in addition to dense reflectance
sampling. On the software side, we combine state-of-the-art
3D reconstruction algorithms with a reflectance sharing
technique based on non-negative matrix factorization
in order to reconstruct a joint model of geometry and
reflectance. We demonstrate for a number of test scenes
that the kaleidoscopic approach can acquire complex
reflectance properties faithfully. The main limitation is
that the multiplexing approach limits the attainable spatial
resolution, trading it off for improved directional coverage.
Projects
A Reconfigurable Camera Add-On for High Dynamic Range, Multispectral, Polarization, and Light-Field Imaging
SIGGRAPH 2013
Abstract
We propose a non-permanent add-on that enables plenoptic
imaging with standard cameras which we refer to as
KaleidoCamera. Our design is based on a physical copying
mechanism that multiplies a sensor image into a number of
identical copies that still carry the plenoptic information
of interest. Via different optical filters, we can then
recover the desired information. A minor modification of the
design also allows for aperture subsampling and, hence,
light-field imaging. As the filters in our design are
exchangeable, a reconfiguration for different imaging
purposes is possible. We show in a prototype setup that high
dynamic range, multispectral, polarization, and light-field
imaging can be achieved with our design.
Project Page Video Data Set Bibtex
@article{Manakov:13,
author = {Alkhazur Manakov and John Restrepo and Oliver Klehm and Ramon Hegeds and Elmar Eisemann and Hans-Peter Seidel and Ivo Ihrke},
title = {A Reconfigurable Camera Add-On for High Dynamic Range, Multispectral, Polarization, and Light-Field Imaging},
journal = {ACM Trans. on Graphics (SIGGRAPH'13)},
volume = 32, number = 4, year = 2013,
pages = {xx--yy},
}
author = {Alkhazur Manakov and John Restrepo and Oliver Klehm and Ramon Hegeds and Elmar Eisemann and Hans-Peter Seidel and Ivo Ihrke},
title = {A Reconfigurable Camera Add-On for High Dynamic Range, Multispectral, Polarization, and Light-Field Imaging},
journal = {ACM Trans. on Graphics (SIGGRAPH'13)},
volume = 32, number = 4, year = 2013,
pages = {xx--yy},
}