

Optique de l'Extrême

Sébastien de Rossi

1. interaction rayons X et matière

Diffusion par

- un électron libre
- un nuage d'électrons libres
- un électron lié
- un atome
- une molécule
- un cristal parfait
- un cristal plus ou moins ordonné

 OPTIQUE de L'EXTREME 2017

 2. réfraction et réflexion aux interfaces

 satellite CHANDRA (NASA)

69

OPTIQUE de L'EXTREME 2017 • Structure multicouche	78
2. réfraction et réflexion aux interfaces	
En incidence normale, la réflectivité est limitée	
aux hautes énergies	
par l'épaisseur des couches, faible contraste d'indice, rugosité Tungstène / Carbure de Bore (W/B4C) R=0,1% @1keV (λ = 1,2 nm)	
aux basses énergies	
par l'absorption Silicium / Gadolinium (Si/Gd) R = 30% @19eV (λ = 63 nm)	

OPTIQUE de L'EXTREME 2017 Structure multicouche 302. réfraction et réflexion aux interfaces $\lambda = 2d_{période}sin\theta \rightarrow Q = \frac{2\pi}{d_{période}} = \frac{4\pi}{\lambda}sin\theta$ Si ça marche pour une longueur d'onde à un angle **alors** ça marche pour une autre longueur d'onde à un autre angle !! *En particulier, si la longueur d'onde est très courte alors l'angle est très faible* **principe de la réflectométrie en X rasant pour sonder les structures en profondeur**

OPTIQUE de L'EXTREME 2017 Composants Optiques	90
Optiques réflectives	
Optiques réfractives	
Optiques diffractives	
Optiques diffractives et réflectives	

OPTIQUE de L'EXTREME 2017 Composants Optiques	91
Optiques réflectives	
incidence rasante substrat nu ou simple revêtement	
incidence normale revêtement multicouches sur substrat superpoli	

OPTIQUE de L'EXTREME 2017 Composants Optiques	102
Optiques réflectives	
incidence rasante substrat nu ou simple revêtemer	nt
incidence normale revêtement multicouches sur sul	bstrat superpoli
Optiques réfractives	
lentilles bulles très hautes énergies (faible abso	rption)

OPTIQUE de L'EXTREME 2017 Composa	ants Optiques	106
Optiques réflectives		
incidence rasante	substrat nu ou simple revêtement	
incidence normale	revêtement multicouches sur substrat superpoli	
Optiques réfractives		
lentilles bulles	très hautes énergies (faible absorption)	
Optiques diffractives		
cristaux lentilles de Fresnel réseaux	croissance et polissage nanotechnologie nécessaire réflexion, transmission	

OPTIQUE de L'EXTREME 2017	Composa	nts Optiques	113
Optiques réfle	ectives		
incidenc	e rasante	substrat nu ou simple revêtement	
incidenc	e normale	revêtement multicouches sur substrat superpoli	
Optiques réfr	actives		
lentilles	bulles	très hautes énergies (faible absorption)	
Optiques diff	ractives		
cristaux lentilles réseaux	de Fresnel	croissance et polissage nanotechnologie nécessaire réflexion, transmission	
Optiques diff miroirs E	ractives et i Bragg-Fresnel	réflectives	

OPTIQUE de L'E	XTREME 2017 SOURCE Synchr	otron	124
4. source X			
	création d'électron	cavité radiofréquence l	
E C	accélération linéaire	linac 15 m - 200 MeV	INJECTION
10 ⁻¹³ atn	accélération circulaire	booster Φ 20 m - GeV	
de poussé	aimant de courbure aimant de focalisation	0,8 T	ANNEAUX DE STOCKAGE
<u> </u>	éléments d'insertion	onduleur / wiggler	Φ ≈ 100 m 200 mA
réseaux (cristaux ou miroir gravé)			
	tente miroir de focalisatio chambre échantillo	on n	LIGNE DE LUMIERE ≈ 15 m

OPTIQUE de L'EXTREME 2017 S	ource synchrotron	126
Installation	Période d'émergence	Brillance en ph/s/mm ² /mrad ²
Tubes scellés	années 1900	~ 10 ⁷
Tubes scellés	années 1960	~ 10 ⁸
Tubes à anode tournante	années 1970	~ 109
Tubes « micro-foyer »	années 1980	~ 10 ¹⁰
Synchrotron 1 ^{ère} génération	années 1970	$\sim 10^{11} - 10^{13}$
Synchrotron 2 ^{ème} génération	années 1985	~ 10 ¹⁶
Synchrotron 3 ^{ème} génération	Années 1990-2000 ESRF 1994 ESRF 2000 SOLEIL 2006	~ 10^{18} ~ $2 \ 10^{18}$ ~ $10^{20} \ (hv \sim 10 \text{ keV}; \text{RX durs})$ ~ $10^{20} \ (hv \sim 1 \text{ keV}; \text{RX mous})$
Synchrotron 4 ^{ème} génération	Années 2010 : Lasers SASE (Self Amplified Spontaneous Emission)	~ 10^{21} - 10^{23} , en construction ~ 10^{24} - 10^{26} , en projet

OPTIQUE de L'E	XTREME 2017 Sommaire	128
1.	interaction rayons X et matière	
2.	réfraction, réflexion à une interface	
3.	optiques X diverses	
4.	source X (synchrotron)	
5.	imagerie X	

PTIQUE de L'EXTREME 2017 • Imagerie X par diffraction cohérente				146
5. imagerie X	Amplitude ² (a) Loop 1	Phase	Reconstructed object	
	From data	Random		
	(b) Loop 10	Partial Retrieval		
	(c) Loop 374	Full Retrieval		
			Ø	

