

TD2

TD 2 / RÉALISER UN ÉTAGE DE PRÉ-AMPLIFICATION

Objectifs pédagogiques

- A la fin de cette thématique, les étudiant-e-s seront capables de :
- lister les paramètres importants dans le choix d'un amplificateur linéaire intégré
- définir et exécuter un protocole expérimental pour :
 - ▷ caractériser un système linéaire, en continu et dans le domaine fréquentiel, incluant un ALI
 - ▷ valider le fonctionnement d'un étage de pré-amplification vis-à-vis d'un cahier des charges (contraintes et performances)
- choisir et mettre en oeuvre une solution analogique adaptée à un cahier des charges pour la mise en forme d'un signal provenant d'un capteur ou d'un autre système

Activités pédagogiques

- Lectures (hors temps présentiel en ligne)
 - ▷ Fiche résumé : Amplificateur Linéaire Intégré / Principe et montages de base
- Séance de **TD2**
- Séance de **TP2** (module TP CéTI)

Ressources Complémentaires

- Fiche résumé : Amplificateur Linéaire Intégré / Principe et montages de base
- Fiche résumé : Amplificateur Linéaire Intégré / Modélisation 1er ordre et rebouclage
- Exercices supplémentaires proposés sur eCampus (avec correction)

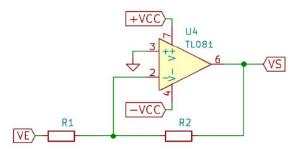
Exercice 1 - Amplificateur Linéaire Intégré TL081

Notions abordées

- $\,\triangleright\,$ paramètres importants d'un ALI
- $\,\triangleright\,$ relation entre la sortie et les entrées

On fournit en annexe une partie de la documentation technique de l'amplificateur linéaire intégré (ALI) **TL081**.

1. Cherchez dans la documentation les valeurs des paramètres électriques suivants :

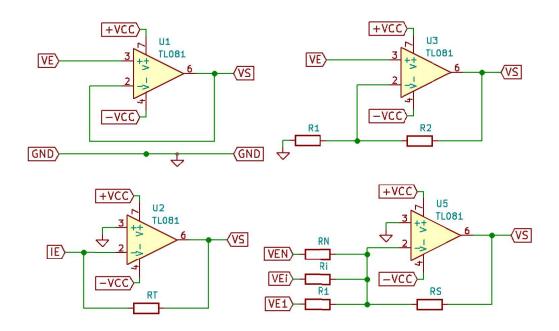

- (a) Tension d'alimentation (Supply Voltage)
- (b) Tension d'entrée différentielle maximale
- (c) Amplification différentielle
- (d) Gain unitaire ou produit gain-bande-passante
- (e) Impédance d'entrée
- (f) Slew Rate
- 2. Précisez à quoi corresponde chacun de ces paramètres.
- 3. Rappelez la relation entre les entrées $V^+,\,V^-$ et la sortie V_S d'un ALI.
- 4. Tracez la caractéristique $V_S = f(\varepsilon)$ où $\varepsilon = (V^+ V^-)$ pour cet ALI avec $V_{CC} = 15$ V.
- 5. Est-ce un bon amplificateur ? Quelle est sa bande-passante ?

Exercice 2 - Amplificateur inverseur

Notions abordées

 $\triangleright\,$ montage amplificateur inverseur

On se propose d'étudier à présent le montage suivant :


- 1. Donnez la relation entre V_S et V_E du circuit précédent en utilisant la relation d'entrées-sortie de l'exercice 1.
- 2. Quelle hypothèse fait-on souvent lorsqu'on utilise des ALI avec une rétroaction négative ?
- 3. Quelle relation trouve-t-on alors entre V_S et V_E en partant de cette hypothèse ?
- 4. Cette hypothèse est-elle justifiée ?

Exercice 3 - Structures amplificatrices

Notions abordées

 \triangleright montage amplificateur inverseur

On s'intéresse aux montages suivants, autour d'amplificateurs linéaires intégrés.

Donnez les relations entre les grandeurs de sortie (V_S) , les grandeurs d'entrée $(V_E \text{ ou } I_E)$ et des différents éléments des montages autour de U1, U2, U3 et U5.

Exercice 4 - Montage amplificateur

Notions abordées

 $\triangleright\,$ conception d'un circuit amplificateur

On souhaite réaliser, à partir d'amplificateur linéaire intégré de type TL081, un système ayant les performances suivantes :

- gain dans la bande-passante : 27 dB
- bande-passante de : 400 kHz

Proposez une solution.

Sample &

🖥 Buy

TL081, TL081A, TL081B, TL082, TL082A TL082B, TL084, TL084A, TL084B

SLOS0811-FEBRUARY 1977-REVISED MAY 2015

TL08xx JFET-Input Operational Amplifiers

Technical

Documents

Features 1

- Low Power Consumption: 1.4 mA/ch Typical
- Wide Common-Mode and Differential Voltage Ranges
- Low Input Bias Current: 30 pA Typical
- Low Input Offset Current: 5 pA Typical
- **Output Short-Circuit Protection**
- Low Total Harmonic Distortion: 0.003% Typical
- High Input Impedance: JFET Input Stage
- Latch-Up-Free Operation
- High Slew Rate: 13 V/µs Typical
- Common-Mode Input Voltage Range Includes V_{CC+}

2 Applications

- Tablets
- White goods
- Personal electronics
- Computers

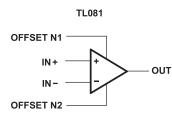
3 Description

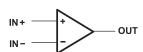
Tools &

Software

The TL08xx JFET-input operational amplifier family is designed to offer a wider selection than any previously developed operational amplifier family. Each of these JFET-input operational amplifiers incorporates well-matched, high-voltage JFET and bipolar transistors in a monolithic integrated circuit. The devices feature high slew rates, low input bias and offset currents, and low offset-voltage temperature coefficient.

Support &


Community


Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)		
TL084xD	SOIC (14)	8.65 mm × 3.91 mm		
TL08xxFK	LCCC (20)	8.89 mm × 8.89 mm		
TL084xJ	CDIP (14)	19.56 mm × 6.92 mm		
TL084xN	PDIP (14)	19.3 mm × 6.35 mm		
TL084xNS	SO (14)	10.3 mm × 5.3 mm		
TL084xPW	TSSOP (14)	5.0 mm × 4.4 mm		

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Schematic Symbol

TL082 (EACH AMPLIFIER) **TL084 (EACH AMPLIFIER)**

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

www.ti.com

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

				MIN	MAX	UNIT
V _{CC+}	Supply voltage ⁽²⁾				18	v
V _{CC} -	Supply voltage				-18	v
V _{ID}	Differential input voltage ⁽³⁾				±30	V
VI	Input voltage ⁽²⁾⁽⁴⁾		±15	V		
	Duration of output short circuit ⁽⁵⁾			Unlir	nited	
Continuous total power dissipation				See Dissipatio	n Rating Table	
			TL08_C TL08_AC TL08_BC	0	70	
T _A	Operating free-air temperature		TL08_I	-40	85	°C
			TL084Q	-40	125	
			TL08_M	-55	125	
	Operating virtual junction temperat	Operating virtual junction temperature				°C
T _C	Case temperature for 60 seconds	FK package	TL08_M		260	°C
	Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	J or JG package	TL08_M		300	°C
T _{stg}	Storage temperature		·	-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values, except differential voltages, are with respect to the midpoint between V_{CC+} and V_{CC-}.

(3) Differential voltages are at IN+, with respect to IN-.

(4) The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.

(5) The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.

6.2 ESD Ratings

			VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	1000	
$V_{(ESD)}$	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 $^{(2)}$	1500	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

				MIN	MAX	UNIT
V _{CC+}	Supply voltage			5	15	V
V _{CC} -	Supply voltage			-5	-15	V
V _{CM}	Common-mode voltage			V _{CC-} + 4	$V_{CC^+}-4$	V
	TL08xM TL08xQ	TL08xM		-55	125	
т		-40	125	°C		
I A			-40	85	C	
			0	70		

www.ti.com

Electrical Characteristics for TL08xC, TL08xxC, and TL08xI (continued)

$V_{CC+} = +15 V$	(unless otherwise	noted)
V((± ±10 V)		notou)

PARAMETER TEST CONDITIONS		PARAMETER		-			IC, TL08 TL084C	32C,		AC, TL0 L084AC			3C, TL03 L084BC			31I, TL08 TL084I	32I,	UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX				
I _{CC}	Supply current (each amplifier)	V _O = 0, No load	25°C		1.4	2.8		1.4	2.8		1.4	2.8		1.4	2.8	mA		
V ₀₁ /V ₀₂	Crosstalk attenuation	A _{VD} = 100	25°C		120			120			120			120		dB		

6.6 Electrical Characteristics for TL08xM and TL084x

V_{CC±} = ±15 V (unless otherwise noted)

	DADAMETED	TEST CONDITIONS ⁽¹⁾	-	TL0	TL081M, TL082M			TL084Q, TL084M		
	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
		V 0. D 50.0	25°C		3	6		3	9	
V _{IO}	Input offset voltage	$V_{O} = 0$, $R_{S} = 50 \Omega$	Full range			9			15	mV
α _{VIO}	Temperature coefficient of input offset voltage	V _O = 0, R _S = 50 Ω	Full range		18			18		µV/°C
	Input offset current ⁽²⁾	V _O = 0	25°C		5	100		5	100	pА
I _{IO}		v ₀ - 0	125°C			20			20	nA
	Input bias current ⁽²⁾	V _O = 0	25°C		30	200		30	200	pА
I _{IB}	input bias current.	$v_0 = 0$	125°C			50			50	nA
V _{ICR}	Common-mode input voltage range		25°C	±11	-12 to 15		±11	-12 to 15		V
		R _L = 10 kΩ	25°C	±12	±13.5		±12	±13.5		
V _{OM}	Maximum peak output voltage swing	R _L ≥ 10 kΩ		±12			±12			V
	ouput voltago oming	R _L ≥2 kΩ	Full range	±10	±12		±10	±12		
•	Large-signal differential		25°C	25	200		25	200		
A _{VD}	voltage amplification	$V_{O} = \pm 10 \text{ V}, \text{ R}_{L} \ge 2 \text{ k}\Omega$	Full range	15			15			V/mV
B ₁	Unity-gain bandwidth		25°C		3			3		MHz
r _i	Input resistance		25°C		10 ¹²			10 ¹²		Ω
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}min,$ $V_O = 0, R_S = 50 \Omega$	25°C	80	86		80	86		dB
k _{SVR}	Supply-voltage rejection ratio $(\Delta V_{CCt}/\Delta V_{IO})$	$V_{CC} = \pm 15 \text{ V to } \pm 9 \text{ V},$ $V_{O} = 0, \text{ R}_{S} = 50 \Omega$	25°C	80	86		80	86		dB
I _{CC}	Supply current (each amplifier)	V _O = 0, No load	25°C		1.4	2.8		1.4	2.8	mA
V ₀₁ /V ₀₂	Crosstalk attenuation	A _{VD} = 100	25°C		120			120		dB

All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified.
Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive, as shown in Figure 13. Pulse techniques must be used that maintain the junction temperatures as close to the ambient temperature as possible.

6.7 Operating Characteristics

 $V_{CC\pm} = \pm 15 \text{ V}, T_A = 25^{\circ} \text{C}$ (unless otherwise noted)

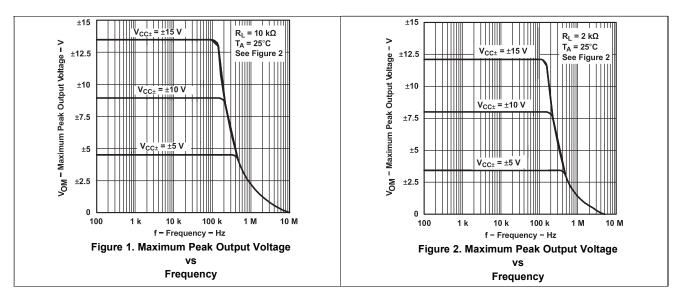
	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
		$V_I = 10 V, R_L = 2 k\Omega, C_L = 100 pF,$ See Figure 19	8 ⁽¹⁾	13		
SR	Slew rate at unity gain	$V_{I} = 10 V, R_{L} = 2 k\Omega, C_{L} = 100 pF,$ $T_{A} = -55^{\circ}C to 125^{\circ}C,$ See Figure 19	5 ⁽¹⁾			V/µs

(1) On products compliant to MIL-PRF-38535, this parameter is not production tested.

Copyright © 1977–2015, Texas Instruments Incorporated

Submit Documentation Feedback

SLOS081I-FEBRUARY 1977-REVISED MAY 2015


www.ti.com

6.9 Typical Characteristics

Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. The Figure numbers referenced in the following graphs are located in *Parameter Measurement Information*.

			Figure
V _{OM}	Maximum peak output voltage	versus Frequency versus Free-air temperature versus Load resistance versus Supply voltage	Figure 1, Figure 2, Figure 3 Figure 4 Figure 5 Figure 6
٨	Large-signal differential voltage amplification	versus Free-air temperature versus Load resistance	Figure 7 Figure 8
A _{VD}	Differential voltage amplification	versus Frequency with feed-forward compensation	Figure 9
PD	Total power dissipation	versus Free-air temperature	Figure 10
I _{CC}	Supply current	versus Free-air temperature versus Supply voltage	Figure 11 Figure 12
I _{IB}	Input bias current	versus Free-air temperature	Figure 13
	Large-signal pulse response	versus Time	Figure 14
Vo	Output voltage	versus Elapsed time	Figure 15
CMRR	Common-mode rejection ratio	versus Free-air temperature	Figure 16
V _n	Equivalent input noise voltage	versus Frequency	Figure 17
THD	Total harmonic distortion	versus Frequency	Figure 18

Table 1. Table of Graphs

