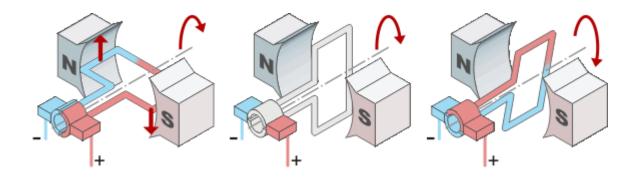


Les moteurs

Julien VILLEMEJANE



Conversion électrique/mécanique

 Moteur = élément de conversion d'une puissance électrique vers une puissance mécanique

- Aspect électrique : $P_{em} = E \cdot I$
- Aspect mécanique : $P_{em} = T_{em} \cdot \Omega$

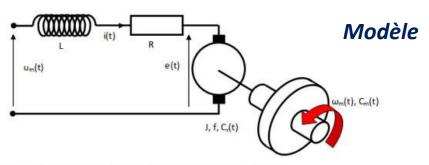
Paris-Saclay

où:

- E: la force contre-électromotrice [volt]
- I: le courant dans l'induit [ampère]
- T_{em} : le couple du moteur [N.m]
- Ω : vitesse angulaire de l'induit [rad/s]

- Couple souvent lié au courant
- Eléments de puissance indispensables
- Transistor / Pont en H / Drivers

https://www.energieplus-lesite.be/index.php?id=11530#c7327+c7323



Moteur à courant continu

- Vitesse proportionnelle à fem
- Quasiment proportionnelle à U

Les équations qui modélisent le comportement du moteur sont les suivantes :

Loi d'Ohm dans le circuit d'induit :	$u_m(t) = \Theta(t) + R \cdot i(t) + L \cdot \frac{di(t)}{dt}$	(1)
Équations de l'électromagnétisme dans le moteur :	$e(t) = K_{\theta} \cdot \omega(t)$	(2)
	$c_m(t) = K_c \cdot i(t)$	(3)
Équation de la dynamique de l'arbre moteur :	$c_m(t) - c_r(t) - f \cdot \omega(t) = J \cdot \frac{d\omega(t)}{dt}$	(4)

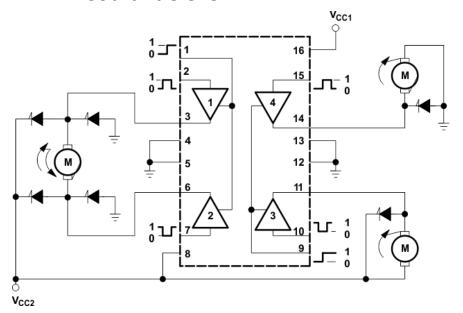
- u_m(t) est la tension d'alimentation i(t) est le courant consommé e(t) est la tension contre-électromotrice (V) R est la valeur de la résistance (Ω) L est la valeur de l'inductance Ke est le coefficient de fcem (V/(rad/s))
- ω(t) est la vitesse de rotation de l'arbre moteur (rad/s) f est le paramètre de frottement "fluide" total (N.m/(rad/s))
- Kc est la constante de couple
- (kg.m²) J est l'inertie totale ramenée sur l'axe moteur (N.m/A)
- c_m(t) est le couple moteur.

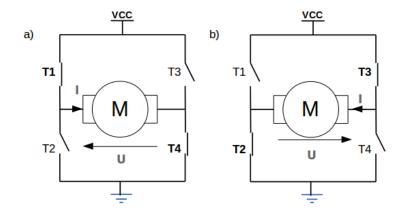
C'est « l'effort tournant » qu'est capable de fournir le moteur. Plus ce couple est important et plus le moteur aura la capacité à faire tourner une lourde charge.

 c_r(t) est le couple résistant sur l'axe moteur. C'est un effort qui s'oppose au mouvement de rotation du moteur et qui à tendance à le freiner. Par exemple, des herbes hautes et épaisses vont générer un couple résistant au niveau des lames fixées sur l'axe de sortie du moteur electrique que l'on trante de l'entre production de la company de la com

- Facile à mettre en œuvre
- Peu de couple
- Asservissement de position nécessitant un encodeur externe
- Usure mécanique (balais)

Saint-Étienne


Bordeaux

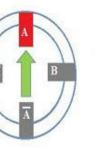

Moteur à courant continu

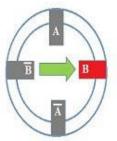
Pilotage

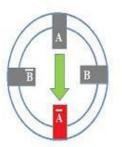
Courant élevé

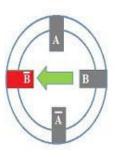
Pont en H – L293D (avec diode roue libre – 0.6A) ou L298 (sans diode roue libre – 1.5A)

- Facile à mettre en œuvre
- Peu de couple
- Asservissement de position nécessitant un encodeur externe
- Usure mécanique (balais)

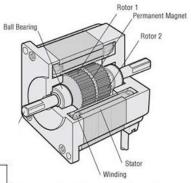


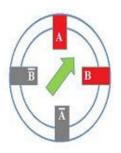


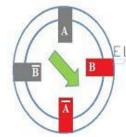


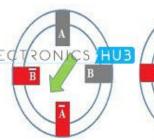

Avancement pas par pas

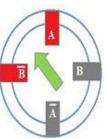
Full Step - One Phase ON






Step	Phase					
	A	В	Ā	B		
1	1	0	0	0		
2	0	1	0	0		
3	0	0	1	0		
4	0	0	0	1		



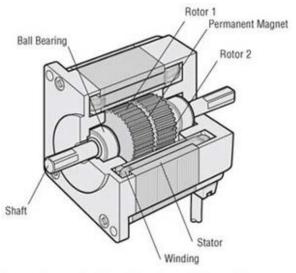

tructural Diagram: Cross-Section Parallel to Shaft

Full Step - Two Phase ON

Step	Phase					
	A	В	Ā	B		
1	1	1	0	0		
2	0	1	1	0		
3	0	0	1	1		
4	1	0	0	1		

https://www.electronicshub.org/stepper-motor-control-using-arduino/

https://www.orientalmotor.com/stepper-motors/technology/stepper-motor-overview.html

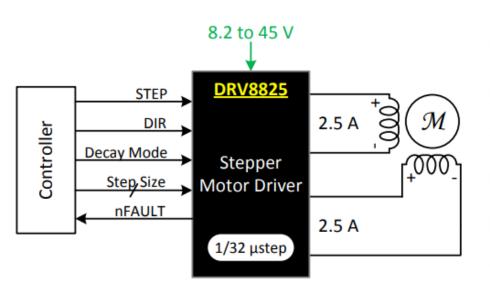


Avancement pas par pas

Motor Structural Diagram: Cross-Section Parallel to Shaft

- Asservissement de position
 « inclus »
- Couple intéressant
- Pilotage à maitriser
- Vitesse réduite

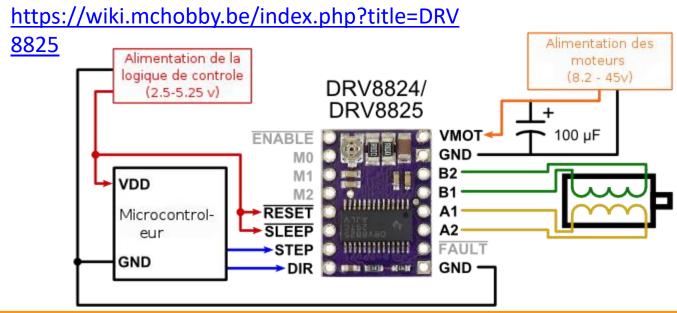
 $\underline{https://www.orientalmotor.com/stepper-motors/technology/stepper-motor-overview.html}$





Pilotage

- Utilisation d'un pont en H triphasé
- Commande avec DRV8825



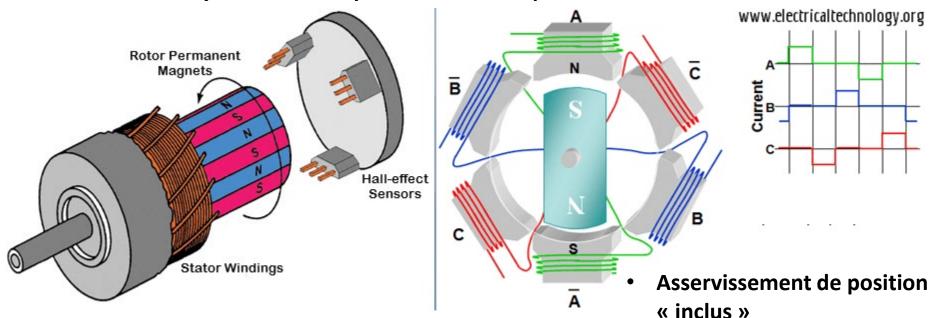
Pilotage

- Utilisation d'un pont en H triphasé
- Commande avec DRV8825

- BLDC: BrushLess Direct Current
 machine synchrone auto-pilotée à aimants permanents
- Avancement pas par pas
- Sans contact entre rotor et stator

- Asservissement de position« inclus »
- Couple intéressant
- Pilotage à maitriser

 $\underline{\text{https://www.electricaltechnology.org/2016/05/bldc-brushless-dc-motor-construction-working-principle.html}}$

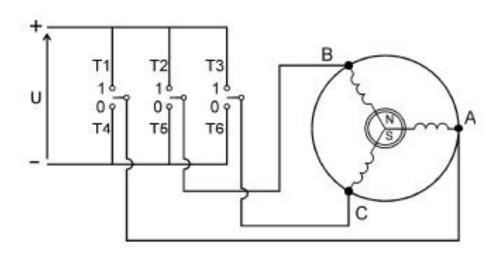


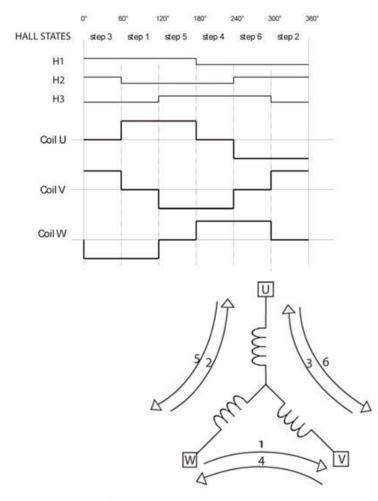
BLDC: BrushLess Direct Current
 machine synchrone auto-pilotée à aimants permanents

Construction, Working Principle & Operation of BLDC Mc

- Couple intéressant
- Pilotage à maitriser

https://www.electricaltechnology.org/2016/05/bldc-brushless-dc-motor-construction-working-principle.html

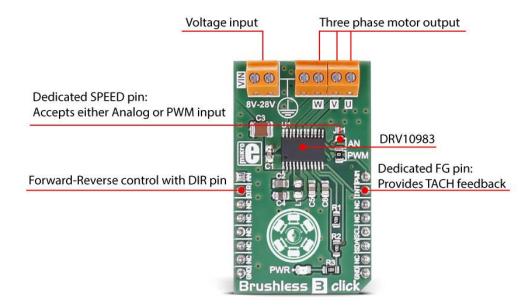




Transistors

 $\frac{https://www.digikey.com/en/articles/techzone/2013/mar/an-introduction-to-brushless-dc-motor-control}{}$

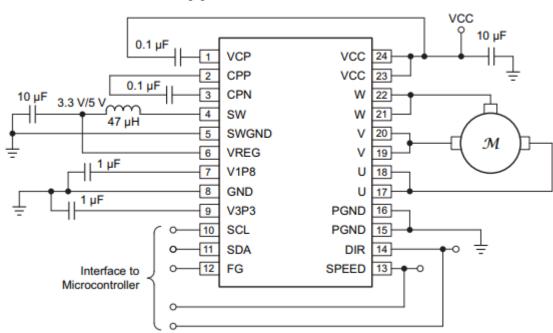
 $\underline{\text{http://www.energoelektronika.pl/do/ShowNews?id=1599}}$



Pilotage

- Utilisation d'un pont en H triphasé
- Commande en I2C / DRV10983

https://download.mikroe.com/documents/add-on-boards/click/brushless-3/brushless-3-click-schematic.pdf


Pilotage

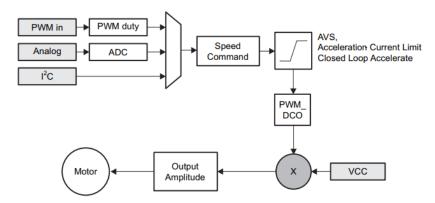
- Utilisation d'un pont en H triphasé
- Commande en I2C / DRV10983

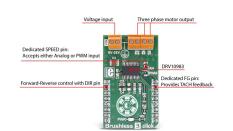
SDA I²C EEPROM Communicatio SW 3.3-/5-V Step-FG VREG Down Regulator SWGND VCC VCP Charge 3.3-V LDO V3P3 CPP Pump CPN 1.8-V LDO GND Oscillator Pre-Driver Bandgap Logic ADC sensor VCP Pre-Driver SPEED PWM and Analog Speed Control E Over Curren Pre-Driver Thermal GND PGND UVLO

Application Schematic

Copyright @ 2016, Texas Instruments Incorporated

https://www.mikroe.com/brushless-3-click





Pilotage

- Utilisation d'un pont en H triphasé
- Commande en I2C / DRV10983

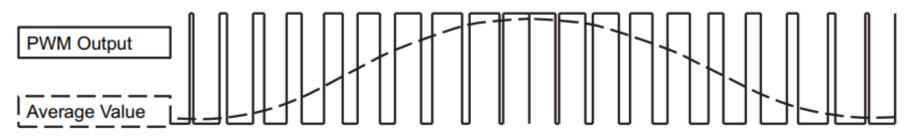


Figure 6. PWM Output and the Average Value

Pilotage

8.5.1 I²C Serial Interface

The DRV10983 provides an I²C slave interface with slave address 101 0010. TI recommends a pullup resistor 4.7 k Ω to 3.3 V for I²C interface port SCL and SDA.

Four read/write registers (0x00:0x03) are used to set motor speed and control device registers and EEPROM. Device operation status can be read back through 12 read-only registers (0x10:0x1E). Another 12 EEPROM registers (0x20:0x2B) can be accessed to program motor parameters and optimize the spin-up profile for the application.

8.5.2 Register Map

Register Name	Address	D7	D6	D5	D4	D3	D2	D1	D0
SpeedCtrl1 ⁽¹⁾	0x00	SpdCtrl[7:0]							
SpeedCtrl2 ⁽¹⁾	0x01	OverRide							SpdCtrl[8]
DevCtrl ⁽¹⁾	0x02				enProg	Key[7:0]			
EECtrl (1)	0x03	sleepDis	Sldata	eeRefresh	eeWrite				
Status ⁽²⁾	0x10	OverTemp	Slp_Stdby	OverCurr	MtrLck				
MotorSpeed1 (2)	0x11				MotorSp	eed[15:8]			
MotorSpeed2 ⁽²⁾	0x12				MotorSp	peed[7:0]			
MotorPeriod1 ⁽²⁾	0x13		MotorPeriod[15:8]						
MotorPeriod2 ⁽²⁾	0x14	MotorPeriod[7:0]							
MotorKt1 (2)	0x15	MotorKt[15:8]							
MotorKt2 ⁽²⁾	0x16	MotorKt[7:0]							
IPDPosition ⁽²⁾	0x19	IPDPosition[7:0]							
SupplyVoltage ⁽²⁾	0x1A	SupplyVoltage [7:0]							
SpeedCmd ⁽²⁾	0x1B	SpeedCmd [7:0]							
spdCmdBuffer ⁽²⁾	0x1C	spdCmdBuffer[7:0]							
FaultCode (2)	0x1E			Lock5	Lock4	Fault3	Lock2	Lock1	Lock0

Pilotage Table 9. Register Description

Register		Data	B					
Name	Address	Bits	Data	Description				
SpeedCtrl1 ⁽¹⁾	0x00	7:0	SpdCtrl[7:0]	8 LSB of a 9-bit value used for the motor speed. If OverRide = 1, the user can directly control the motor speed by writing to the register through I ² C.				
		7	OverRide	Use to control the SpdCtrl [8:0] bits. If OverRide = 1, the user can write the speed command through I^2C .				
		6:1	N/A	N/A				
SpeedCtrl2 ⁽¹⁾	0x01	0	SpdCtrl [8]	MSB of a 9-bit value used for the motor speed. If OverRide = 1, user can directly control the motor speed by writing to the register through I ² C. The MSB should be written first. Digital takes a snapshot of the MSB when LSB is written.				
DevCtrI ⁽¹⁾	0x02	7:0	enProgKey[7:0]	8-bit byte use to enable programming in the EEPROM. To program the EEPROM, enProgKey = 1011 0110 (0xB6), followed immediately by eeWrite = 1. Otherwise, enProgKey value is reset.				
		7	sleepDis	Set to 1 to disable entering into sleep or standby mode.				
		6	Sldata	Set to 1 to enable the writing to the configuration registers.				
EECtrl ⁽¹⁾ 0x03		5	eeRefresh	Copy EEPROM data to register.				
		4	eeWrite	Bit used to program (write) to the EEPROM.				
		3:0	N/A	N/A				
		7	OverTemp	Bit to indicate device temperature is over its limits.				
		6	Slp_Stdby	Bit to indicate that device went into sleep or standby mode.				
		5	OverCurr	Bit to indicate that a phase to phase overcurrent event happened. This is a sticky bit, once written, it stays high even if overcurrent signal goes low. This bit is cleared on Read.				
Status ⁽²⁾	0x10	4	MtrLck	Bit to indicate that the motor is locked.				

