

### Computational Optical Imaging -Optique Numerique

### -- Volumetric 3D --

Winter 2013

Ivo Ihrke





- Tomography
  - Absorption / emission
  - Fourier Slice Theorem and Filtered Back Projection
  - Algebraic Reconstruction
  - Applications
- Volume Slicing
  - Direct Scanning
  - Index Matching
  - Bessel Beams



### **Volumetric 3D**

## Tomography

## Outline



- Computed Tomography (CT)
  - Radon transform
  - Filtered Back-Projection
  - natural phenomena
  - glass objects

## **Computed Tomography (CT)**



3D

GRADUATE SCHOOL

INSTITUT

**d'OPTIQUE** 



f(x,y)



$$\mathcal{R}\left\{f\right\}\left(\alpha,s\right) = \int_{c_{\alpha,s}} f \circ c_{\alpha,s}(t) dt$$

- Radon: Inverse transform exists
  - if all  $(\alpha, s)$  are covered
- First numerical application

 $c(\alpha, s)$ 

Viktor Ambartsumian (1936, astrophysics)



#### Johann Radon (1887-1956)



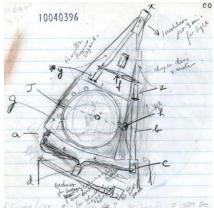
#### Viktor Ambartsumian (1909-1996)



## **Some History**



### CT Scanning



Sketch of the invention



Prototype scanner

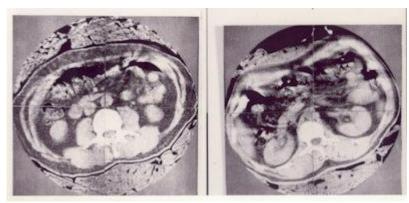


Godfrey Hounsfield (1919-2004)



Allan Cormack (1924-1998)

1979 Nobel prize in Physiology or Medicine



Hounsfield's abdomen

## The math

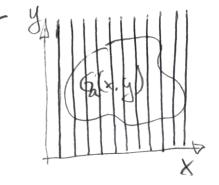


- X-rays are attenuated by body tissue and bones
  - Attenuation is spatially variant (attenuation coeff.  $\sigma_a(x,y)$  )

$$I(x) = I_0(x)e^{-\int_c \sigma_a(x,y)dy}$$
  

$$\Rightarrow \frac{I(x)}{I_0(x)} = e^{-\int_c \sigma_a(x,y)dy}$$
  

$$\Rightarrow \log \frac{I(x)}{I_0(x)} = -\int_c \sigma_a(x,y)dy$$



T(x)

- $I(x), I_0(x)$  are known, determine  $\sigma_a(x, y)$
- III-posed for only one direction lpha
  - Need all



## Well-Posed and III-Posed Problems

- Definition [Hadamard1902]
  - a problem is well-posed if
    - 1. a solution exists
    - 2. the solution is unique
    - 3. the solution continually depends on the data
  - a problem is ill-posed if it is not well-posed



### **Volumetric 3D**

### Tomography – Fourier-Based Techniques

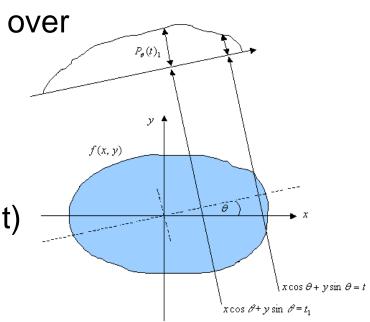
- tomography is the problem of computing a function from its projections
- a projection is a set of line integrals over function m along some ray c

$$o=\int_c m(c(s))ds$$

invert this equation (noise is present)

$$o = \int_c m(c(s)) ds + n$$

 if infinitely many projections are available this is possible (Radon transform) [Radon1917]





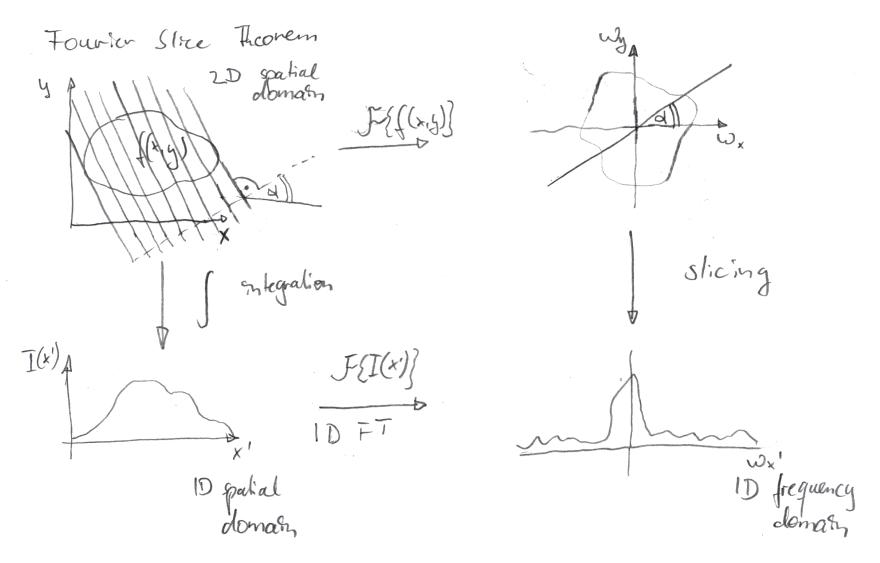
#### Computed Tomography – Frequency Space Approach



- Fourier Slice Theorem
- The Fourier transform of an orthogonal projection is a slice of the Fourier transform of the function

## **Computed Tomography – FST**

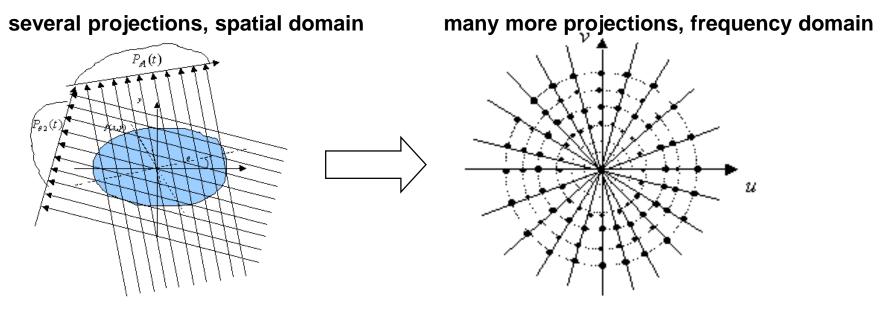




#### Computed Tomography – Frequency Space Approach



for recovery of the 2D function we need several slices



- slices are usually interpolated onto a rectangular grid
- inverse Fourier transform
- gaps for high frequency components
  - $\rightarrow$  artifacts

### Frequency Space Approach - Example



#### without noise !

original (Shepp-Logan head phantom) reconstruction from 18 directions



reconstruction from 36 directions



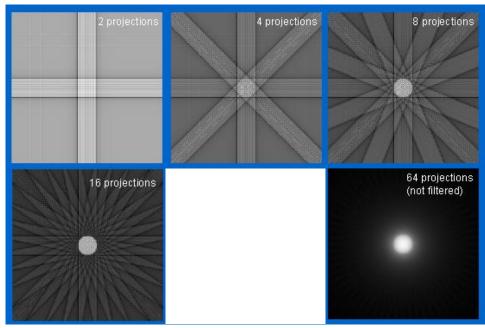


#### reconstruction from 90 directions





- Fourier transform is linear
  - → we can sum the inverse transforms of the lines in frequency space instead of performing the inverse transform of the sum of the lines



backprojection:

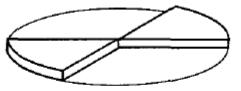
Ivo Ihrke / Winter 2013

## **Filtered Back-Projection**



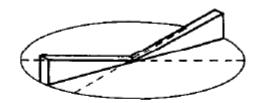
- Why filtering ?
- discrete nature of measurements gives unequal weights to samples
- compensate

would like to have wedge shape for one discrete measurement have a bar shape (discrete measurement) compensate to have equal volume under filter



frequency domain





| high p | bass filter |
|--------|-------------|
|--------|-------------|

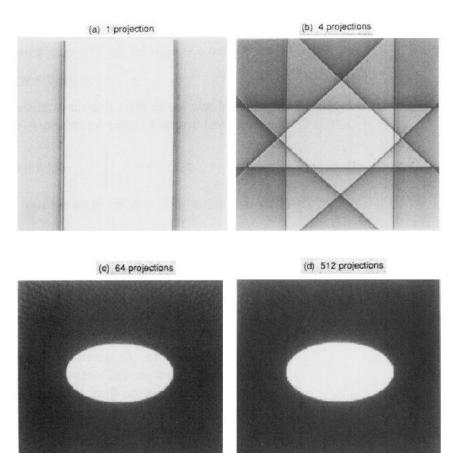
(c)

(a)

## Filtered Back-Projection (FBP)



- high pass filter 1D projections in spatial domain
- back-project
- blurring is removed
  - FBP can be implemented on the GPU
  - projective texture mapping





- Advantages
  - Fast processing
  - Incremental processing (FBP)
- Disadvantages
  - need orthogonal projections
  - sensitive to noise because of high pass filtering
  - Frequency-space artifacts, e.g. ringing
  - Equal angular view spacing (or adaptive filtering)



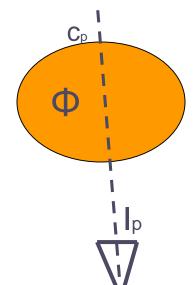
### **Volumetric 3D**

### Tomography – Algebraic Techniques

- object described by Φ, a density field of e.g. emissive soot particles
- pixel intensities are line integrals along line of sight

$$I_p = \int_C \phi \ ds$$

Task: Given intensities, compute Φ



ART

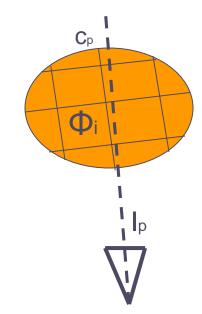


- Algebraic Reconstruction Technique (ART)
- Discretize unknown Φ using a linear combination of basis functions Φ

$$I_p = \int_c \left(\sum_i a_i \phi_i\right) \, ds$$

•  $\rightarrow$  linear system p = Sa

$$I_p = \sum_i a_i \left( \int_{C_p} \phi_i \, ds \right)$$

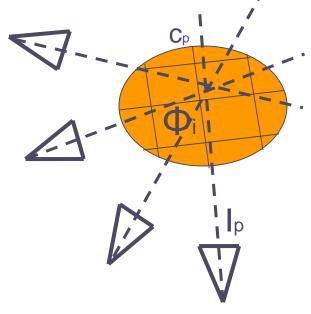






 Discretize unknown Φ using a linear combination of basis functions Φ<sub>i</sub>

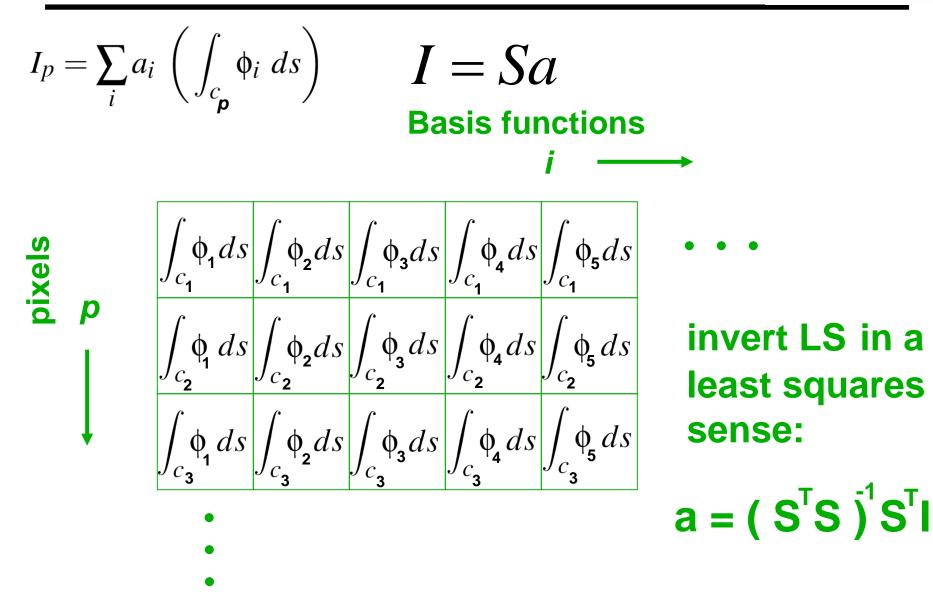
$$I_p = \int_c \left(\sum_i a_i \phi_i\right) ds$$
$$I_p = \sum_i a_i \left(\int_{c_p} \phi_i ds\right)$$



Need several views

### **ART – Matrix Structure**





#### Frequency Space based Methods -Disadvantages



- Advantages
  - Accomodates flexible acquisition setups
  - Can be made robust to noise (next lecture)
  - Arbitrary or adaptive discretization
  - Can be implemented on GPU
- Disadvantages
  - May be slow
  - May be memory-consumptive

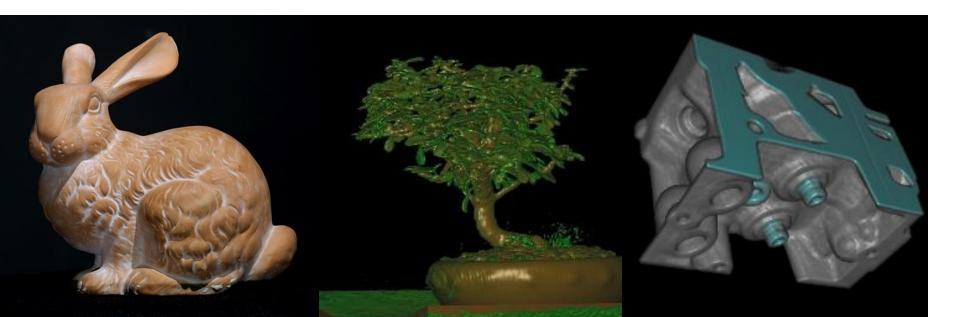


### **Volumetric 3D**

## **Tomography Applications**

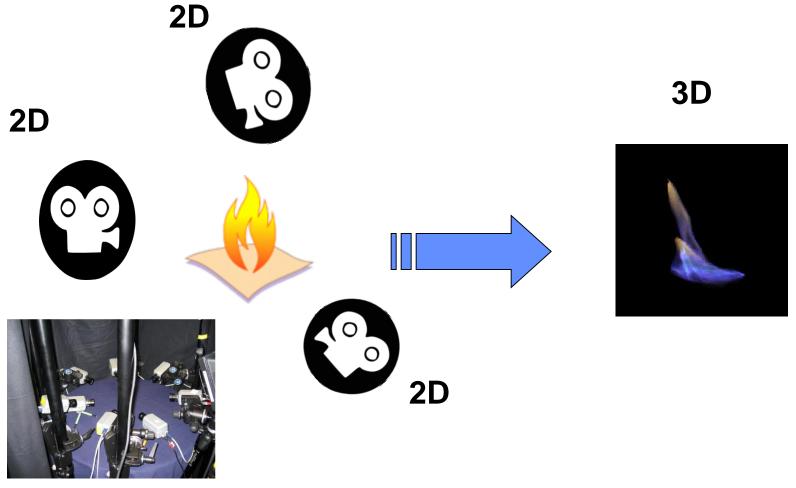
# CT Applications in measurement and d'OPTIQUE d'OPTIQUE GRADUATE SCHOOL

- Acquisition of difficult to scan objects
- Visualization of internal structures (e.g. cracks)
- No refraction





#### reconstruction of flames using a multi-camera setup

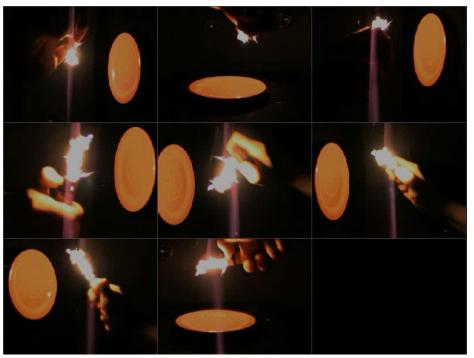


## Flame tomography



- Calibrated, synchronized camera setup
  - 8 cameras, 320 x 240 @ 15 fps

8 input views in original camera orientation



Camera setup



Ivo Ihrke / Winter 2013

[lhrke' 04]

## **Sparse View ART - Practice**

- Large number of projections is needed
- In case of dynamic phenomena
  - → many cameras
  - expensive
  - inconvenient placement
- straight forward application of ART with few cameras not satisfactory

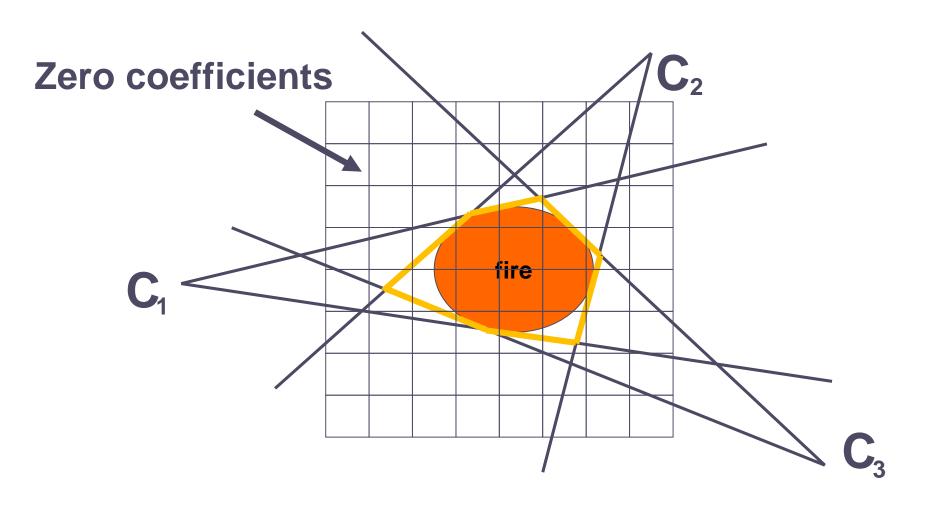
[lhrke' 04]





### Visual Hull Restricted Tomography





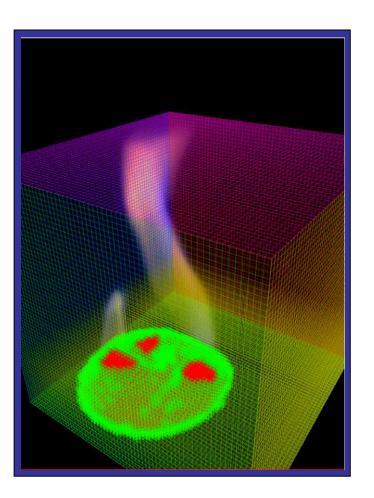
<sup>[</sup>lhrke' 04]

Ivo Ihrke / Winter 2013

[lhrke' 04]

### **Visual Hull Restricted Tomography**

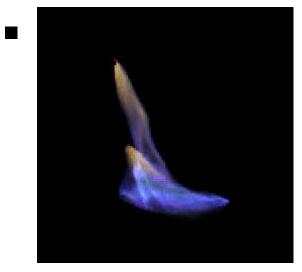
- Only about 1/10 of the voxels contribute
- Remove voxels that do not contribute from linear system
- Complexity of inversion is significantly reduced



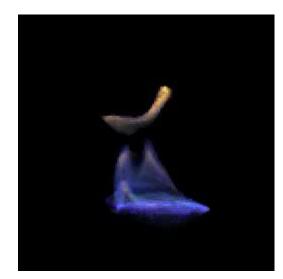


#### **Animated Flame Reconstruction**





#### frame 86



frame 194



#### animated reconstructed flames

### **Smoke Reconstructions**



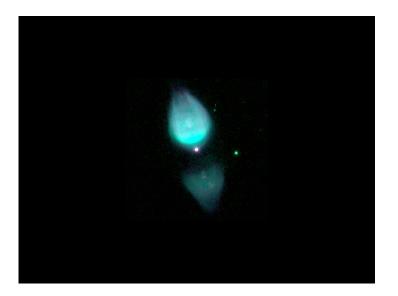
[lhrke' 06]





3D Reconstruction of Planetary Nebulae

- only one view available
- exploit axial symmetry
- essentially a 2D problem

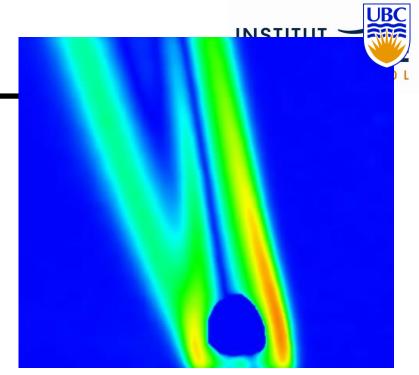


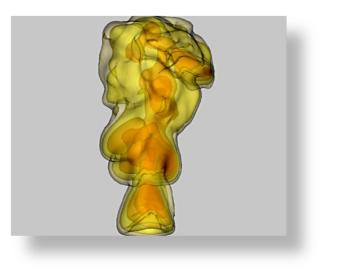


[Magnor04]

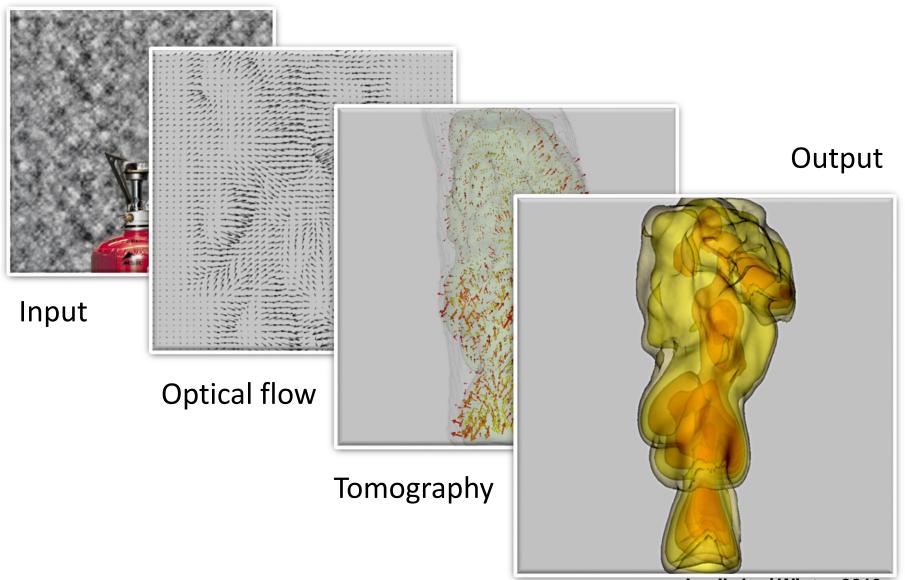






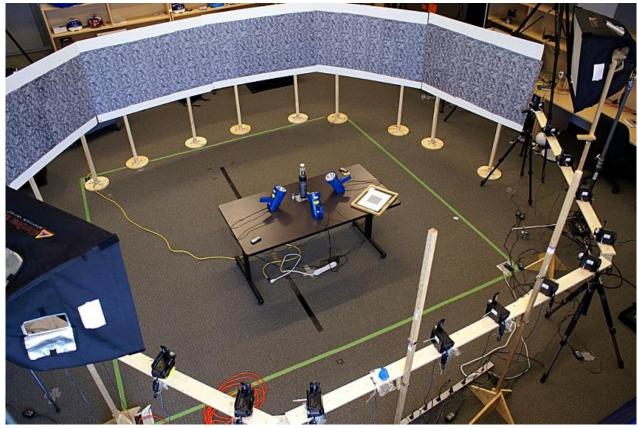






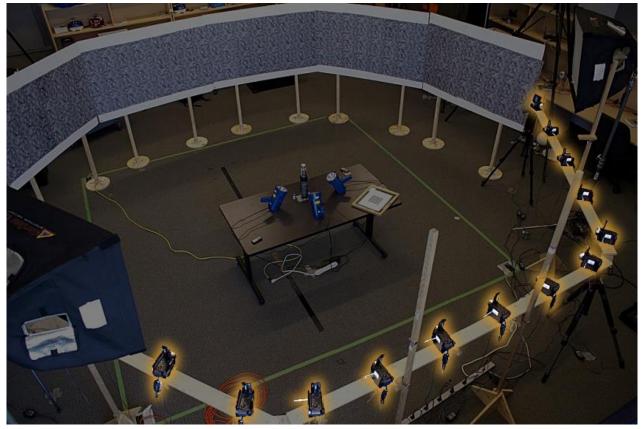
# Schlieren Tomography - Acquisition RADUATE SCHOOL

16 camera array (consumer camcorders)



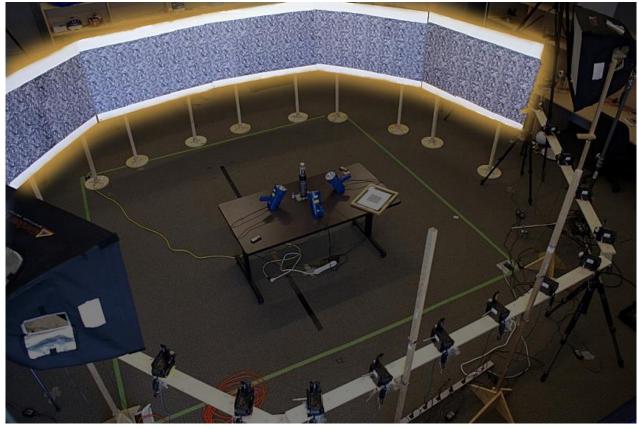
# Schlieren Tomography - Acquisition RADUATE SCHOOL

16 camera array (consumer camcorders)



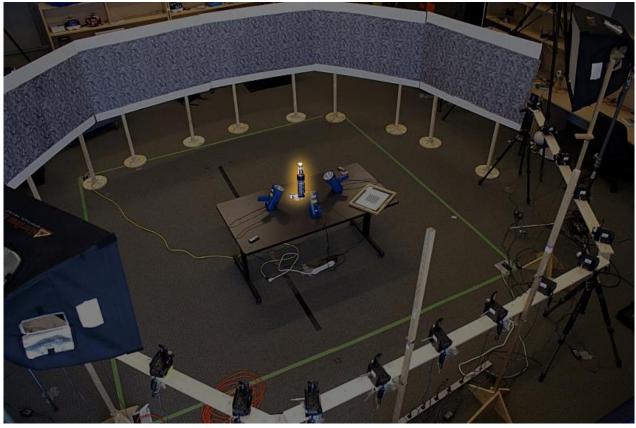
# Schlieren Tomography - Acquisition

16 camera array (consumer camcorders)

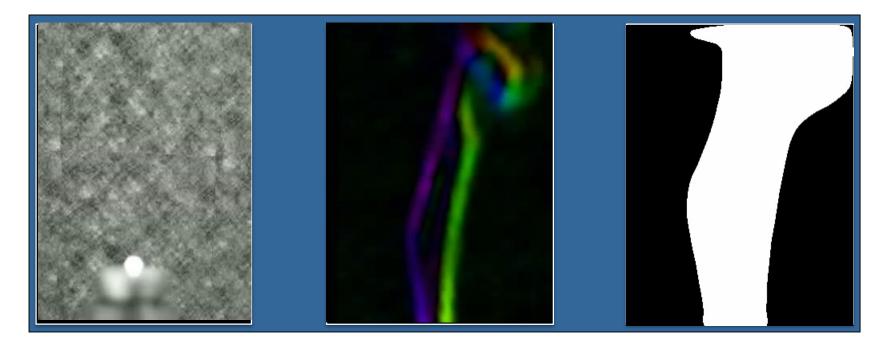


# Schlieren Tomography - Acquisition

16 camera array (consumer camcorders)







#### Input

#### **Optical flow**

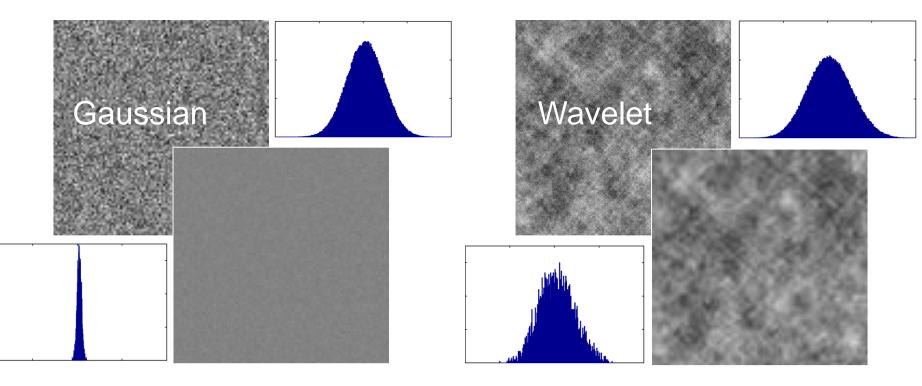
Mask

## Schlieren CT – Background Patter

High frequency detail everywhere

Decouple pattern resolution from sensor

Wavelet noise [Cook 05]



## **Schlieren CT - Image Formation**

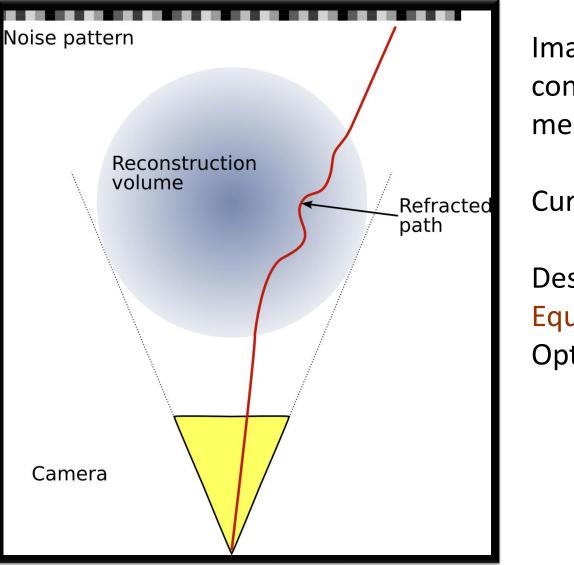


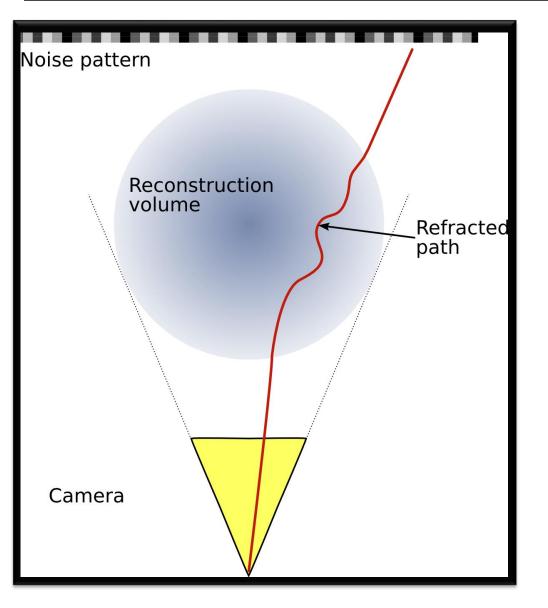
Image formation in continuously refracting media

GRADUAT

Curved Rays

Described well by Ray Equation of Geometric Optics

## Schlieren CT - Image Formation



Continuous ray tracing, e.g. [Stam 96, Ihrke 07] Set of 1<sup>st</sup> order ODE's :

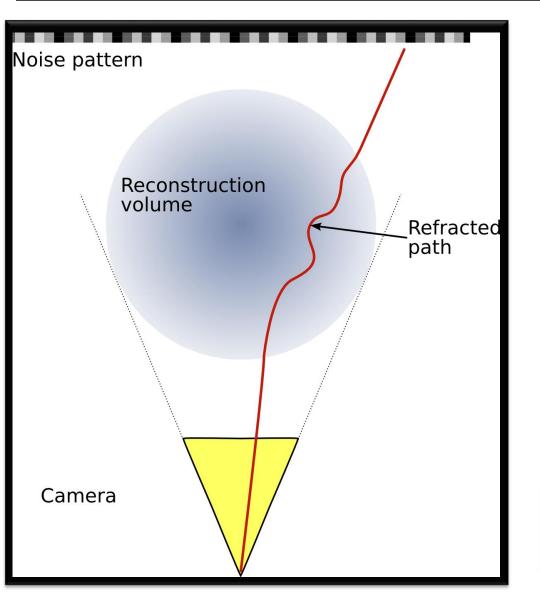
$$n\frac{d\mathbf{x}}{ds} = \mathbf{d}$$
$$\frac{d\mathbf{d}}{ds} = \nabla n$$

Ivo Ihrke / Winter 2013

GRADUATE

SC

## Schlieren CT - Ray equation



Continuous ray tracing, e.g. [Stam 96, Ihrke 07]

Set of ODE's :

$$n\frac{d\mathbf{x}}{ds} = \mathbf{d}$$

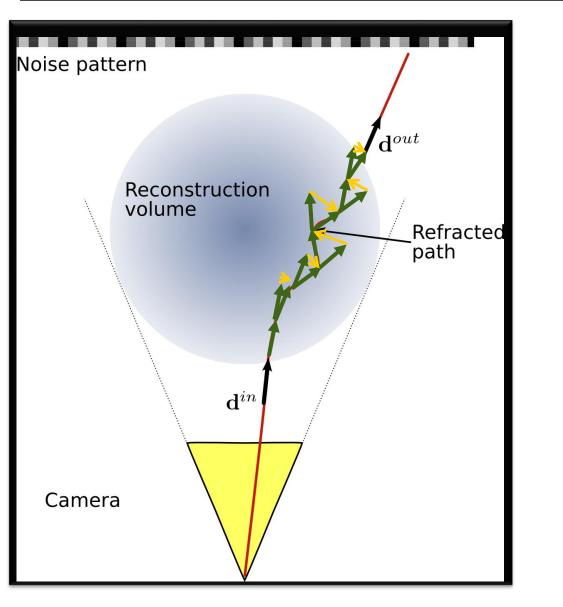
$$\frac{d\mathbf{d}}{ds} = \nabla n$$

Ivo Ihrke / Winter 2013

GRADUATE

SCHO

## Schlieren CT - Ray equation



Integrating

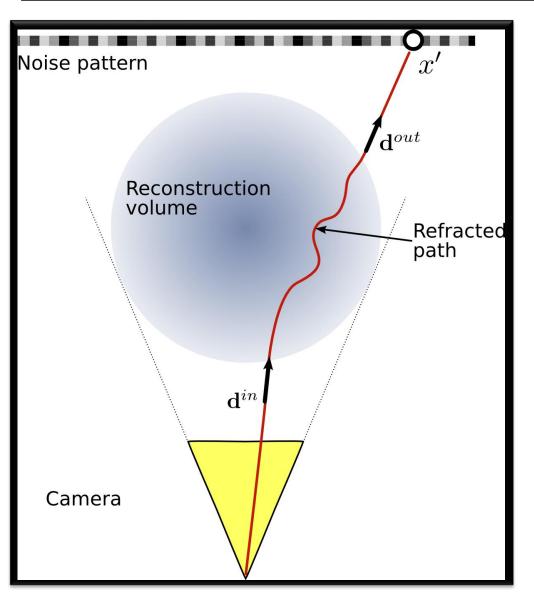
$$\frac{d\mathbf{d}}{ds} = \nabla n$$

yields

$$\mathbf{d}^{out} = \mathbf{d}^{in} + \int_c \nabla n \, ds$$

Ivo Ihrke / Winter 2013

INSTITUT d'OPTIQUE

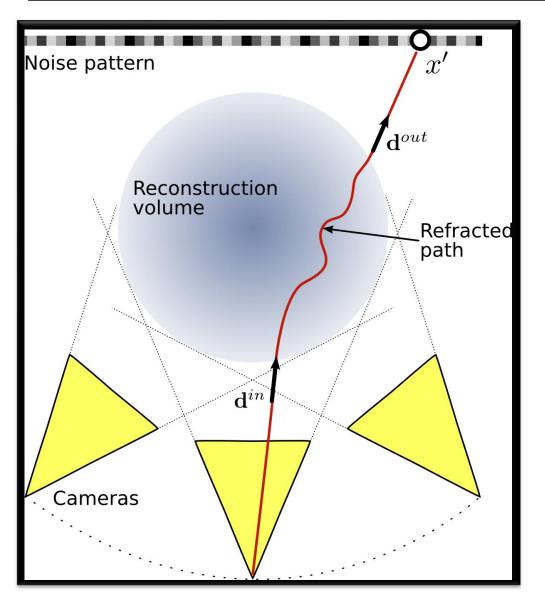


Basic equation for Schlieren Tomography

$$\mathbf{d}^{out} - \mathbf{d}^{in} = \int_{c} \nabla n \, ds$$

Ivo Ihrke / Winter 2013

INSTITUT d'OPTIQUE

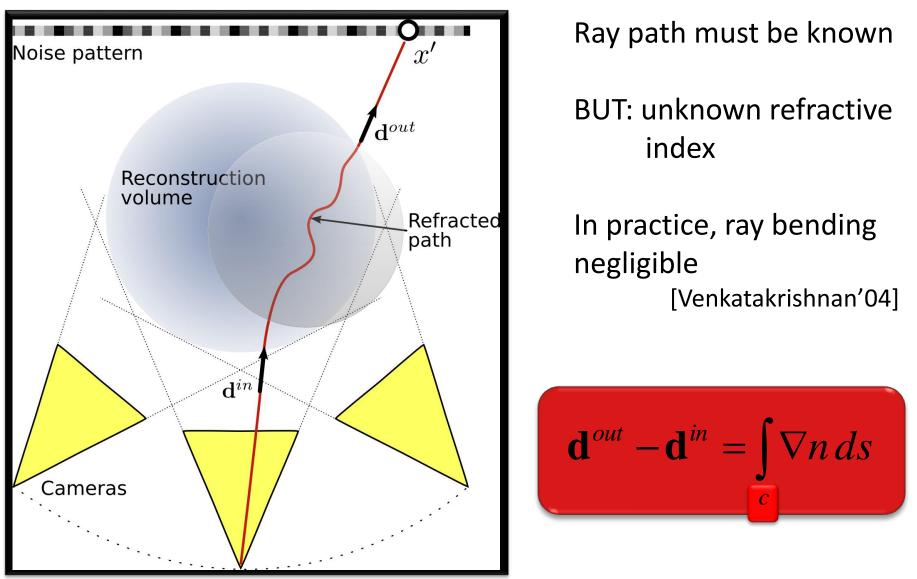


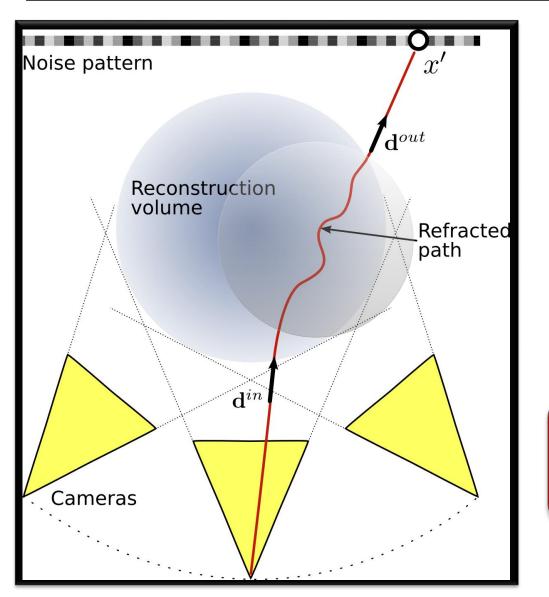
Based on measurements of line integrals from different orientations

$$\mathbf{d}^{out} - \mathbf{d}^{in} = \int_{c} \nabla n \, ds$$









INSTITUT d'OPTIQUE GRADUATE SCHOOL

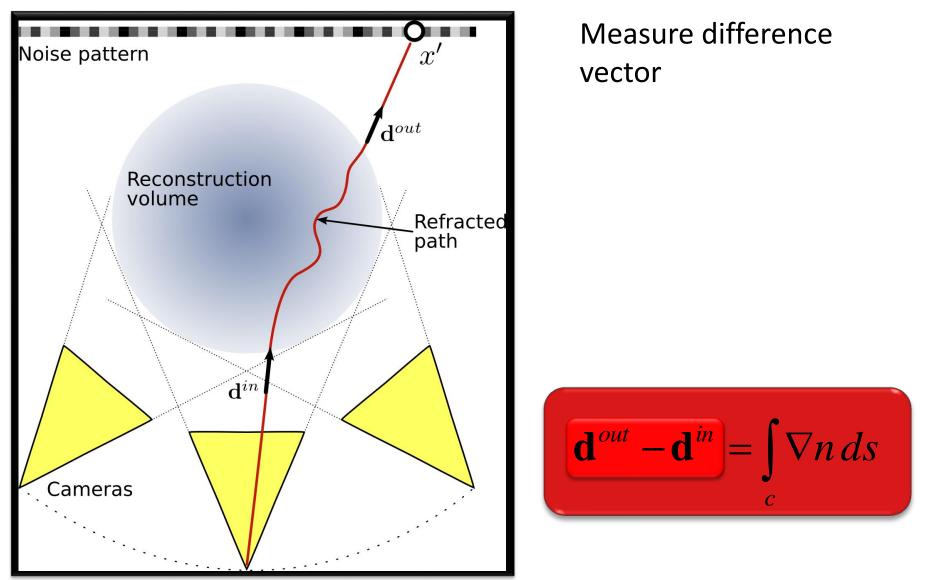
Ray path must be known

BUT: unknown refractive index

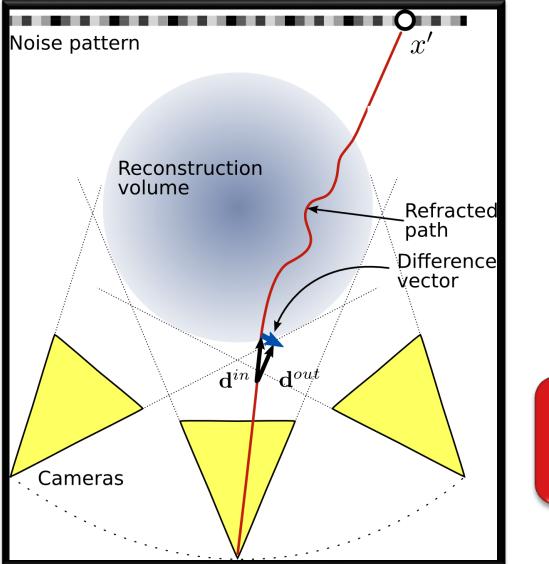
Affects integration path only, equation still holds approximately!

$$\mathbf{d}^{out} - \mathbf{d}^{in} = \int \nabla n \, ds$$

#### Schlieren Tomography - Measurements



#### Schlieren Tomography - Measurements



Measure difference vector

SCHOOL

Component parallel to optical axis is lost

$$\mathbf{d}^{out} - \mathbf{d}^{in} = \int_{c} \nabla n \, ds$$

Vector-valued tomographic problem

**Discretize gradient** 

Radially symmetric basis functions

$$\overline{\nabla n} = \sum_{i} \mathbf{n}_{i} \phi_{i}$$

Linear system in

$$\overline{\mathbf{d}}^{out} - \mathbf{d}^{in} = \int_{c} \sum_{i} \mathbf{n}_{i} \phi_{i} ds = \sum_{i} \mathbf{n}_{i} \int_{c} \phi_{i} ds$$

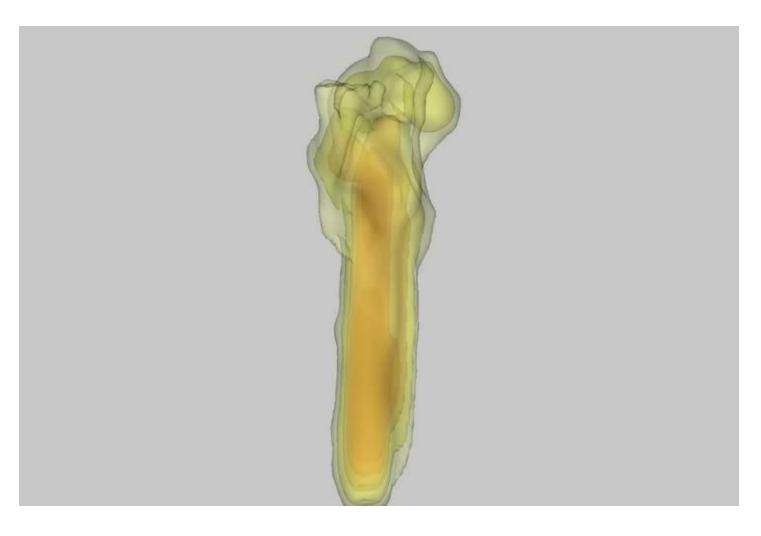
Given  $\nabla n$  from tomography Compute <sup>*n*</sup> from definition of Laplacian

$$\nabla \cdot \nabla n = \Delta n$$

Solve Poisson equation to get refractive index

- Inconsistent gradient field due to noise and other measurement error
- Anisotropic diffusion

#### Schlieren Tomography - Results

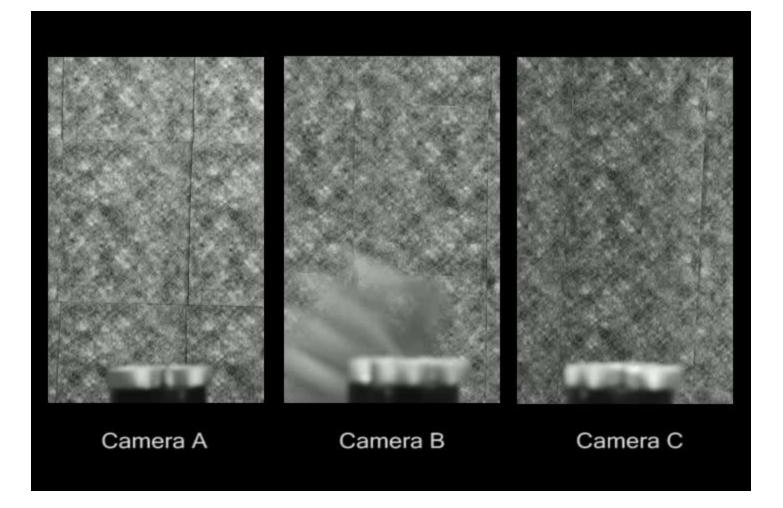


Ivo Ihrke / Winter 2013

INSTITUT

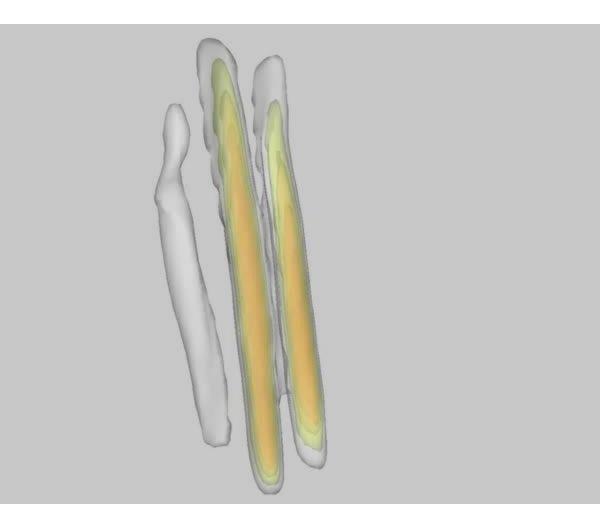
**d'OPTIQUE** 

#### **Schlieren Tomography - Results**



INSTITUT d'OPTIQUE

#### Schlieren Tomography - Results



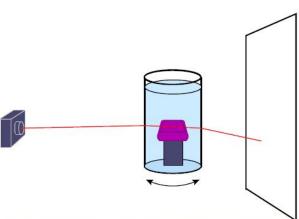
Ivo Ihrke / Winter 2013

INSTITUT

**d'OPTIQUE** 

- visible light tomography of glass objects
  - needs straight ray pathes
- compensate for refraction
  - immerse glass object in water
  - add refractive index matching agent
  - $\rightarrow$  "ray straightening"
- apply tomographic reconstruction







#### Ivo Ihrke / Winter 2013

#### 3D Scanning of Glass Objects [Trifonov06]

- Tomographic reconstruction results in volume densities
- use marching cubes to extract object surfaces



