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 Tomography 

 Absorption / emission

 Fourier Slice Theorem and Filtered Back 
Projection 

 Algebraic Reconstruction 

 Applications

 Volume Slicing 

 Direct Scanning

 Index Matching 

 Bessel Beams

Overview
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Volumetric 3D

Tomography
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Outline

 Computed Tomography (CT)

 Radon transform

 Filtered Back-Projection

 natural phenomena

 glass objects
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Computed Tomography (CT)

3D
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Some History

 Radon transform (1917)

 Radon: Inverse transform exists

if all           are covered  

 First numerical application 

Viktor Ambartsumian (1936, astrophysics)

Johann Radon (1887-1956)

Viktor Ambartsumian (1909-1996)
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Some History

 CT Scanning

Godfrey Hounsfield (1919-2004)

Sketch of the invention

Prototype scanner Hounsfield’s abdomen

Allan Cormack (1924-1998)

 1979 Nobel prize in Physiology or Medicine
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The math

 X-rays are attenuated by body tissue and bones

 Attenuation is spatially variant (attenuation coeff.               ) 

 are known, determine 

 Ill-posed for only one direction 

─ Need all
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Well-Posed and Ill-Posed Problems

 Definition [Hadamard1902]

 a problem is well-posed if 

1. a solution exists

2. the solution is unique

3. the solution continually depends on the data

 a problem is ill-posed if it is not well-posed
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Volumetric 3D

Tomography – Fourier-Based 
Techniques
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Computed Tomography

 tomography is the problem of computing 
a function from its projections

 a projection is a set of line integrals over 
function m along some ray c

 invert this equation (noise is present)

 if infinitely many projections are 
available this is possible (Radon 
transform) [Radon1917]
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Computed Tomography –
Frequency Space Approach

 Fourier Slice Theorem

 The Fourier transform of an orthogonal 
projection is a slice of the Fourier transform of 
the function
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Computed Tomography – FST
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Computed Tomography –
Frequency Space Approach

 for recovery of the 2D function we need several slices

 slices are usually interpolated onto a rectangular grid

 inverse Fourier transform 

 gaps for high frequency components

 artifacts

several projections, spatial domain many more projections, frequency domain
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Frequency Space Approach - Example

original (Shepp-Logan head phantom) reconstruction from 18 directions

reconstruction from 36 directions reconstruction from 90 directions

without noise !
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Filtered Back-Projection

 Fourier transform is linear 

  we can sum the inverse transforms of the lines in 
frequency space instead of performing the inverse 
transform of the sum of the lines 

backprojection:
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Filtered Back-Projection

 Why filtering ?

 discrete nature of measurements gives unequal 
weights to samples

 compensate
would like to have

wedge shape for one

discrete measurement

have a bar shape

(discrete measurement)

compensate to have

equal volume under filter

frequency domain

high pass filter
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Filtered Back-Projection (FBP)

 high pass filter 1D 
projections in spatial domain

 back-project

 blurring is removed

 FBP can be implemented on 
the GPU

 projective texture mapping
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Frequency Space based Methods 

 Advantages

 Fast processing 

 Incremental processing (FBP)

 Disadvantages

 need orthogonal projections

 sensitive to noise because of high pass filtering

 Frequency-space artifacts, e.g. ringing 

 Equal angular view spacing (or adaptive filtering)
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Volumetric 3D

Tomography – Algebraic 
Techniques 
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Algebraic Reconstruction Techniques (ART)

 object described by Φ, a density 
field of e.g. emissive soot particles 

 pixel intensities are line integrals 
along line of sight 

 Task: Given intensities, compute Φ 

Φ

cp

Ip
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ART

 Algebraic Reconstruction Technique (ART)
 Discretize unknown Φ using a linear combination  

of basis functions Φi

  linear system   p = Sa

Φi

cp

Ip

p
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ART

 Discretize unknown Φ using a linear 
combination  of basis functions Φi

 Need several views 

Φi

cp

Ipp
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ART – Matrix Structure

invert LS in a 

least squares 

sense:
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Frequency Space based Methods -
Disadvantages

 Advantages 

 Accomodates flexible acquisition setups

 Can be made robust to noise (next lecture)

 Arbitrary or adaptive discretization

 Can be implemented on GPU

 Disadvantages

 May be slow

 May be memory-consumptive
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Volumetric 3D

Tomography Applications
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CT Applications in measurement and 
quality control

 Acquisition of difficult to scan objects

 Visualization of internal structures (e.g. cracks)

 No refraction
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3D

2D

2D

2D

Tomographic Imaging in Graphics

reconstruction of flames using a multi-camera setup
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Flame tomography

 Calibrated, synchronized camera setup

 8 cameras, 320 x 240 @ 15 fps

8 input views in 

original camera orientation 

Camera setup
[Ihrke’ 04]
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Sparse View ART - Practice

 Large number of projections is needed

 In case of dynamic phenomena

  many cameras

 expensive

 inconvenient placement

 straight forward application of ART with 
few cameras not satisfactory

[Ihrke’ 04]
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Visual Hull Restricted Tomography

fire

Zero coefficients

C

C

C

1

2

3

[Ihrke’ 04]
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Visual Hull Restricted Tomography

 Only about 1/10 of the 
voxels contribute

 Remove voxels that do 
not contribute from 
linear system

 Complexity of inversion 
is significantly reduced

[Ihrke’ 04]
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Animated Flame Reconstruction



frame 194

frame 86

animated reconstructed flames

[Ihrke’ 04]
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Smoke Reconstructions

[Ihrke’ 06]
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3D Reconstruction of Planetary Nebulae

 only one view available

 exploit axial symmetry

 essentially a 2D problem

[Magnor04]
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Input

Optical flow

Tomography

Output

Schlieren Tomography
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16 camera array (consumer camcorders)

Synchronization & rolling shutter compensation

Schlieren Tomography - Acquisition
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16 camera array (consumer camcorders)

Synchronization & rolling shutter compensation

Schlieren Tomography - Acquisition
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16 camera array (consumer camcorders)

Synchronization & rolling shutter compensation

Schlieren Tomography - Acquisition
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16 camera array (consumer camcorders)

Synchronization & rolling shutter compensation

Schlieren Tomography - Acquisition
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Input Optical flow Mask

Schlieren CT – Image Processing



Ivo Ihrke / Winter 2013

High frequency detail everywhere

Decouple pattern resolution from sensor

Wavelet noise [Cook 05]

Gaussian Wavelet

Schlieren CT – Background Pattern
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Image formation in 
continuously refracting 
media

Curved Rays

Described well by Ray 
Equation of Geometric 
Optics

Schlieren CT - Image Formation
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Continuous ray tracing, 
e.g. [Stam 96, Ihrke 07]

n
ds

d

ds

d
n





d

d
x

Set of 1st order ODE’s :

Schlieren CT - Image Formation



Ivo Ihrke / Winter 2013

Continuous ray tracing, 
e.g. [Stam 96, Ihrke 07]

n
ds

d

ds

d
n





d

d
x

Set of ODE’s :

Schlieren CT - Ray equation 
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
c

inout dsndd

n
ds

d


d

Integrating

yields

Schlieren CT - Ray equation 
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
c

inout dsndd

Basic equation for
Schlieren Tomography

Schlieren Tomography
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Based on measurements 
of line integrals from 
different orientations


c

inout dsndd

Schlieren Tomography
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Ray path must be known

BUT: unknown refractive
index

In practice, ray bending 
negligible 

[Venkatakrishnan’04]


c

inout dsndd

Schlieren Tomography
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Ray path must be known

BUT: unknown refractive
index

Affects integration path
only, equation still holds
approximately! 


c

inout dsndd

Schlieren Tomography
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Measure difference 
vector


c

inout dsndd

Schlieren Tomography - Measurements
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
c

inout dsndd

Measure difference 
vector

Component parallel
to optical axis is lost

Schlieren Tomography - Measurements



Ivo Ihrke / Winter 2013

Vector-valued tomographic problem

Discretize gradient

Radially symmetric basis functions

Linear system in 


i

iin n

  
i c

ii

c i

ii

inout

dsds  nndd

Schlieren Tomography –Linear System
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Given        from tomography

Compute     from definition of Laplacian

Solve Poisson equation to get refractive index

 Inconsistent gradient field due to noise and other 
measurement error

 Anisotropic diffusion

n

Schlieren Tomography - Integration
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Schlieren Tomography - Results
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Schlieren Tomography - Results
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Schlieren Tomography - Results
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 visible light tomography of glass objects

 needs straight ray pathes

 compensate for refraction

 immerse glass object in water

 add refractive index matching agent

 “ray straightening” 

 apply tomographic reconstruction

3D Scanning of Glass Objects [Trifonov06]
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3D Scanning of Glass Objects [Trifonov06]

 Tomographic 
reconstruction results 
in volume densities

 use marching cubes 
to extract object 
surfaces


