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Feature Detection and Matching

Wide-Baseline-Matching
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 SIFT = Scale Invariant Feature Transform 
 David G. Lowe: “Distinctive image features from scale-invariant keypoints” (IJCV 2004)

 http://www.cs.ubc.ca/~lowe/keypoints/

 Suited for wide-baseline matching

 Invariance to changes in illumination, scale, and 
rotation

 No gradient approach, but compares feature 
description of all candidates

 Many applications

Wide-baseline Matching with SIFT
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 Application example: Mosaic generation

Wide-baseline Matching with SIFT
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 Application example: Object recognition

Wide-baseline Matching with SIFT
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 Algorithm steps

 Scale-space extrema detection

 Keypoint localization

 Orientation assignment

 Keypoint descriptor

 Descriptor matching

Wide-baseline Matching with SIFT
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 Need to find “characteristic scale” for features

 Scale space representation

SIFT: Scale-space extrema detection
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 Difference of Gaussian

SIFT: Scale-space extrema detection

Source: http://fourier.eng.hmc.edu/e161/lectures/gradient/node11.html
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 Difference of Gaussian

SIFT: Scale-space extrema detection
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 Non-extremum suppression

 X is selected if it is larger or smaller than all 26 
neighbors (alternatively other 3D windows)

SIFT: Scale-space extrema detection
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 Sub-pixel keypoint localization

SIFT: Keypoint localization

 Finding the extrema by setting the derivative to zero 

 Contrast threshold, reject feature if 

 Cornerness threshold: Reject edges and keep corners, 

reject feature if
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 Contrast threshold

SIFT: Keypoint localization

 729 out of 832 feature are left after contrast thresholding
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 Cornerness threshold

SIFT: Keypoint localization

 536 out of 729 are left after cornerness thresholding
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SIFT: Orientation assignment I

 Gradient magnitute for each pixel

 Orientation for each pixel
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SIFT: Orientation assignment II

 Image location, scale, and orientation impose a 

repeatable local 2D coordinate system in which to 

describe the local image region

 A orientation histogram is formed from the gradient 

orientations of sample points within a region around 

the keypoint. 

 The orientation histogram has 36 bins covering the 

360 degree range of orientations.

 The highest peak in the histogram is detected

0 2 
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 Create 16 gradient histograms (8 bins) 

 Weighted by magnitude and Gaussian window 
(σ  is half the window size)

 Histogram and gradient values are interpolated 
and smoothed

SIFT: Keypoint descriptor

128-feature vector
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SIFT: Descriptor matching

 Nearest Neighbor algorithm based on L2-norm

 How to discard bad matches?
 Threshold on L2-norm => bad performance
 Solution: threshold on ratio: (best match) / (second 

best match)
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SIFT: Descriptor matching
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 VLFeat (http://www.vlfeat.org/index.html)

 Implements SIFT and other modern features

 C-implementation with MATLAB bindings

─ Win/Linux 

 Good tutorials on parameter selection

Software

http://www.vlfeat.org/index.html
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Towards Multiple Views and Self-
Calibration

-- Two-View Geometry and 
Basic Stereo --
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Fundamental Matrix (F-Matrix): 

Fundamental Matrix
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Epipolar Geometry in our example
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 F is a rank 2 homogeneous matrix with 7 degrees of 
freedom

 Epipolar lines

 Epipoles

Fundamental Matrix
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 F can be computed from camera matrices

 General projective cameras:

with                               and 

 Canonical cameras not at infinity                             and   

Fundamental Matrix
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 Typical left and right image with parallel 
optical axes and only horizontally displaced

Use Case – Stereo Matching

[implementation by Rohit Singh and Mitul Sara]

Left image Right image
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 Epipolar lines are parallel lines if optical 
axes are parallel

Epipolar Geometry of a Stereo Pair
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 Simplest: Search a moving window and 
perform correlation 

 E.g. SSD (sum of squared differences)

 Alternatively, SAD (sum of absolute 

differences), CC (cross correlation), etc.

 Usually restricted search range 

Epipolar Geometry of a Stereo Pair



Ivo Ihrke / Winter 2013

 Example, SSD, win=5, search range=15

Correlation-Based Stereo Matching

[implementation by Rohit Singh and Mitul Saha]
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 Example, SSD, win=5, search range=8

Correlation-Based Stereo Matching

[implementation by Rohit Singh and Mitul Saha]
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 Example, SAD, win=5, search range=8

Correlation-Based Stereo Matching

[implementation by Rohit Singh and Mitul Saha]
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 Example, SSD, win=20, search range=8

Correlation-Based Stereo Matching

[implementation by Rohit Singh and Mitul Saha]
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 ADCensus [Mei’11] (#1 Middlebury stereo 
benchmark, Sept. 2013)

A Modern Technique 
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Towards Multiple Views and Self-
Calibration

-- The Structure-from-motion 
Pipeline --
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Voodoo Camera Tracker  - Steps of 
camera tracking 

image sequence

Feature detection 

and

correspondence 

analysis

Outlier Elimination
Incremental

Bundle Adjustment
Self-Calibration

camera parameters



Ivo Ihrke / Winter 2013

 RANSAC (Random Sample Consensus) method

Outlier Elimination
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RANSAC example – line fit

Least-squares fit

LS-fit after RANSAC
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Fundamental Matrix (F-Matrix): 

Outlier Elimination - Fundamental Matrix
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Fundamental Matrix Estimation

multiple of these equations gives a linear equation system

Estimating the fundamental matrix from 

feature correspondence:
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2D Homography (H-Matrix): 

Outlier Elimination - 2D Homography
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2D Homography Matrix Estimation

multiple of these equations gives a linear equation system

Estimating the 2D homography matrix 

from feature correspondence:
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Outlier Elimination - Camera Matrix

Camera matrix (A-Matrix): 
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Incremental Bundle Adjustment
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Bundle Adjustment

Bundle Adjustment
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Measurement vector

Levenberg Marquardt - Non-linear Least 
Squares

Parameter vector

Taylor approximation:

with N x M Jacobian Matrix
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Levenberg Marquardt - Non-linear Least 
Squares

transformed to linear least squares problem for each iteration 
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Levenberg Marquardt - Non-linear Least 
Squares

Linear least squares problem can be solved with normal equations

use to update solution iteratively  
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 Levenberg Marquardt uses slightly different normal equations

Levenberg Marquardt - Non-linear Least 
Squares

Original normal equations

Modified normal equations

 Lambda is changed during optimization

successful iteration

failed iteration

small     ~ Newton style (quadratic convergence)

large      ~ Gradient descent style (guaranteed decrease)
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Requirements for Levenberg Marquardt minimization

 Function to compute f

 Start value X0

 Optionally, function to compute J
(but numerical derivation works as well)

Levenberg Marquardt
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 For bundle adjustment the problem becomes to large

(100 cameras + 10000 3D object points = 31200 parameter)

 Can achieve huge speed-up by exploiting sparse structure of Jacobian
matrix

 Partition parameters

 partition A 

 partition B (only dependent on A and itself)

(typically A contains camera parameters, and B contains 3D points)

Sparse Levenberg Marquardt
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Sparse Levenberg Marquardt

Jacobian becomes

Normal equations

become
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Corresponding block structure is 

where       denotes    augmented by multiplying its diagonal entries by a factor of 1 +   , and      
likewise. Left multiplication with 

yields

which can be used to find       with

which may be back-substituted to get        with

Sparse Levenberg Marquardt
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Jacobian for bundle adjustment has sparse block structure

Sparse Levenberg Marquardt

U1

U2

U3

WT

W

V

A1 A2 A3 P

J JJ
T

12 x m 3 x n
(in general much larger)

im.pts. 

A1

Needed for non-linear minimization
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Voodoo camera tracker – demo session
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 Why self-calibration?

 Allows flexible acquisition

 No prior calibration necessary

 Possibility to vary intrinsic camera parameters

 Use archive footage

Self-calibration
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 We want to find a 4x4 transformation matrix         that 
transforms all projective cameras  into metric cameras 

 This does not change the back-projections onto the 
feature points

Self-calibration
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Voodoo Camera Tracker - Some 
applications

 Virtual advertising
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Voodoo Camera Tracker - More 
applications

 Car navigation

 Architectural visualisation

 3D Endoscopy 

 UAV terrain reconstruction
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Matchmoving in Cloverfield
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Matchmoving in Cloverfield
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 Download and install voodoo camera 
tracker 1.0.1 from course website or from 

http://www.digilab.uni-
hannover.de/download.html

 Download and install Blender 2.49b from 
course website or from

http://www.blender.org/download/get-
blender/

(maybe you also need to install Python)

Homework: Camera motion estimation 
with Voodoo 

http://www.digilab.uni-hannover.de/download.html
http://www.blender.org/download/get-blender/
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 Perform camera tracking with voodoo 
using the „free move“ example sequence

 Export data File → Save → Blender 
Python Script

 Load the python script into Blender's text 
editor and execute the script with ALT-P.

 Select the "voodoo_render_cam" camera 
and press Ctrl-Numpad 0 to activate it. 

 To display the image sequence as a 
backbuffer in Blender, go to [Buttons 
Windows→Scene→Render 

Homework: Camera motion estimation 
with Voodoo 
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 Add a (animated) 3D model of your choice

 Render the sequence

 Submit frame 190, 200, and 210 as jpeg to 
thormae@mpii.de

 Submit before next lecture 

 (optional) generate an avi-file and put it to 
a webspace that is accessible for me and 
send the link

 (optional) use some other sequence 

Homework: Camera motion estimation 
with Voodoo 

mailto:thormae@mpii.de
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That’s it for today

Source: Belfast Telegraph, UK


