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The TV-L2 (ROF) model, Rudin-Osher-Fatemi 1992

For a given noisy input image f , compute

argmin
u∈L2(Ω)

[∫
Ω

|∇u|2 dx︸ ︷︷ ︸
regularizer / prior

+
1

2λ

∫
Ω

(u − f )2 dx︸ ︷︷ ︸
data / model term

]
.

Note: In Bayesian statistics, this can be interpreted as a MAP
estimate for Gaussian noise.

Original Noisy Reconstruction
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Definition
Let Ω ⊂ Rn open. The space L2(Ω) of square-integrable functions is
defined as

L2(Ω) :=

{
u : Ω→ R :

(∫
Ω

|u|2 dx
) 1

2

<∞

}
.
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• The functional

‖u‖2 :=

(∫
Ω

|u|2 dx
) 1

2

is a norm on L2(Ω), with which it becomes a Banach space.
• The norm arises from the inner product

(u, v) 7→
∫

Ω

uv dx

if you set ‖u‖2 :=
√

(u,u). Thus, L2(Ω) is in fact a Hilbert space.
It is one of the most simple examples for an infinite dimensional
Hilbert space.

• In the following, we assume functions to be in L2(Ω), and
convergence, continuity etc. is defined with respect to the above
norm.
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V = Rn V = L2(Ω)

Elements finitely many components infinitely many “components”
xi ,1 ≤ i ≤ n u(x), x ∈ Ω

Inner
Product

(x , y) =
∑n

i=1 xiyi (u, v) =
∫

Ω
uv dx

Norm |x |2 =
√∑n

i=1 x2
i ‖u‖2 =

(∫
Ω
|u|2 dx

) 1
2

Derivatives of a functional E : V → R

Gradient
(Fréchet ) dE(x) = ∇E(x) dE(u) = ?

Directional
(Gâteaux ) δE(x ; h) = ∇E(x) · h δE(u; h) = ?

Condition for
minimum

∇E(x̂) = 0 ?
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Definition
Let V be a vector space, E : V → R a functional, u,h ∈ V. If the limit

δE(u; h) := lim
α→0

1
α

(E(u + αh)− E(u))

exists, it is called the Gâteaux differential of E at u with increment h.

• The Gâteaux differential can be though of as the directional
derivative of E at u in direction h.

• A classical term for the Gâteaux differential is “variation of E”,
hence the term “variational methods”. You test how the functional
“varies” when you go into direction h.
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The variational principle is a generalization of the necessary condition
for extrema of functions on Rn.

Theorem (variational principle)

If û ∈ V is an extremum of a functional E : V → R, then

δE(û; h) = 0 for all h ∈ V.

For a proof, note that if û is an extremum of E , then 0 must be an
extremum of the real function

t 7→ E(û + th)

for all h.
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The Euler-Lagrange equation is a PDE which has to be satisfied by
an extremal point û. A ready-to-use formula can be derived for
energy functionals of a specific, but very common form.

Theorem
Let û be an extremum of the functional E : C1(Ω)→ R, and E be of
the form

E(u) =

∫
Ω

L(u,∇u, x) dx ,

with L : R× Rn × Ω→ R, (a,b, x) 7→ L(a,b, x) continuously
differentiable. Then û satisfies the Euler-Lagrange equation

∂aL(u,∇u, x)− divx [∇bL(u,∇u, x)] = 0,

where the divergence is computed with respect to the location
variable x , and

∂aL :=
∂L
∂a
,∇bL :=

[
∂L
∂b1

. . .
∂L
∂bn

]T

.
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The derivation of the Euler-Lagrange equation requires two theorems:

• The DuBois-Reymond lemma, the most general form of the
“fundamental lemma of variational calculus”,

• The divergence theorem of Gauss, which can be thought of as a
form of “integration by parts” for higher-dimensional spaces.

DuBois-Reymond lemma

Take u ∈ L1
loc(Ω). If ∫

Ω

u(x)h(x) dx = 0

for every test function h ∈ C∞c (Ω), then u = 0 almost everywhere.
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Let h ∈ C∞c (Ω) be a test function. The central idea for deriving the
Euler-Lagrange equation is to compute the Gâteaux derivative of E at
u in direction h, and write it in the form

δE(u; h) =

∫
Ω

φuh dx ,

with a function φu : Ω→ R. Since at an extremum, this expression is
zero for arbitrary test functions h, the Euler-Lagrange equation φu = 0
will then follow from the fundamental lemma.

Note: The equality above shows that the function φu is the
generalization of the gradient, since directional derivatives are
computed via the linear map

h 7→ (φu,h).

The function φu represents the so-called Fréchet derivative of E at u.
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Divergence theorem (Gauss)

Suppose Ω ⊂ Rn is compact with piecewise smooth boundary,
n : ∂Ω→ Rn the outer normal of Ω and p : Rn → Rn a continuously
differentiable vector field, defined at least in a neighbourhood of Ω.
Then ∫

Ω

div(p) dx =

∮
∂Ω

p · n ds.

Corollary: integration by parts

If in addition, u : Ω→ R is a differentiable scalar function, then∫
Ω

∇u · p dx = −
∫

Ω

u · div(p) dx +

∮
∂Ω

up · n ds.
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The Gâteaux derivative of E at u in direction h is

δE(u; h) = lim
α→0

1
α

∫
Ω

L(u + αh,∇(u + αh), x)− L(u,∇u, x) dx .

Because of the assumptions on L, we can take the limit below the
integral and apply the chain rule to get

δE(u; h) =

∫
Ω

∂aL(u,∇u, x)h +∇bL(u,∇u, x) · ∇h dx .

Applying integration by parts to the second part of the integral with
p = ∇bL(u,∇u, x), noting h

∣∣
∂Ω

= 0, we get

δE(u; h) =

∫
Ω

(
∂aL(u,∇u, x)− divx [∇bL(u,∇u, x)]

)
· h dx .

This is the desired expression, from which we can directly see the
definition of φu.
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The ROF functional
∫ x

0
Lecture Notes, HCI WS 2011
Foundations of Variational Image Analysis

The Rudin-Osher-Fatemi (ROF) model

Given an image f ∈ L2(Ω) and a smoothing parameter λ > 0,
compute a denoised image

û ∈ argmin
u∈L2(Ω)

∫
Ω

|∇u|2 +
1

2λ
(u − f )2 dx

• The model was introduced in the (now famous) paper “Nonlinear
total variation based noise removal algorithms” by Leonid Rudin,
Stanley Osher and Emad Fatemi in 1992, and interestingly
appeared in Physica D, a specialized journal for “nonlinear
phenomena” in natural sciences.

• Note that in the notation above, u is required to be differentiable.
This will be remedied later.
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• The ROF functional is of the form

E(u) =

∫
Ω

L(u,∇u, x) dx

with
L(a,b, x) :=

√
b2

1 + b2
2 +

1
2λ

(a− f (x)).

• The problem is that the norm is not differentiable at b = 0. Thus,
one can only compute gradient descent for an approximated Lε
for a regularization parameter ε > 0:

Lε(a,b, x) :=
√

b2
1 + b2

2 + ε︸ ︷︷ ︸
=:|b|ε

+
1

2λ
(a− f (x))2.
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• The approximation Lε is differentiable everywhere, with

∂aLε(u,∇u, x) =
1
λ

(u(x)− f (x))

∇bLε(u,∇u, x) =
∇u(x)

|∇u(x)|ε

• Thus, according to the theorem, the Euler-Lagrange equation of
the ROF functional is given by

−div
(
∇u
|∇u|ε

)
+

1
λ

(u − f ) = 0.
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More ROF examples
∫ x

0
Lecture Notes, HCI WS 2011
Foundations of Variational Image Analysis

Original Noisy Solution
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In the inpainting problem, we try to recover missing areas of a
damaged picture as plausibly as possible from the known areas
around them.

Damaged image f Recovered image u

Technically, we are given a damaged region Γ ⊂ Ω, and a partial
image f : Ω \ Γ→ R defined only outside the damaged region. We
want to recover u : Ω→ R with u|Ω\Γ= f .
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Once we have an inpainting algorithm, we can also employ it to
remove unwanted regions in an image.

Original image u Removed region Γ Inpainted result
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The idea in TV inpainting is that the missing regions are filled in by
minimizing the total variation, while keeping close to the original
image in the known regions.

TV inpainting model

argmin
u∈L2(Ω)

[∫
Ω

λ |∇u|2 + (1− 1Γ)(u − f )2 dx
]
,

where 1Γ is the characteristic function of Γ, i.e.

1Γ(x) =

{
1 if x ∈ Γ,
0 otherwise.

The constant λ > 0 is chosen small so that smoothing is minimal
outside of the inpainting region.

It looks the same as the ROF model, but there is a factor before the
data term which depends on the location in the image.

22
∫



Examples
∫ x
0 TV inpainting

∫ x
0 Bastian Goldlücke
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Original Damaged Inpainted result

The results are ok given the simplicity of the model, but nothing to be
really proud of.
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TV inpainting results (“textured” images)
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Original Damaged Inpainted

• TV inpainting is unconvincing for highly textured images if the
missing regions are larger. The reason is that no structure is
inferred from surrounding regions, and only boundary values of Γ
are taken into account.

• If you are looking for a variational model for inpainting, look out
for papers on non-local TV by Osher et al.
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Definition
Let b,u : Rn → R. The convolution b ∗ u of b and u is also a function
Rn → R. It is defined point-wise as

(b ∗ u)(x) :=

∫
Rn

b(y)u(x − y) dy .

Remarks:
• We define convolutions with functions defined only on Ω ⊂ Rn by

first extending the function to the full space via setting it to zero
outside of Ω.

• If b ∈ L1(Rn) and u ∈ Lp(Rn), then the convolution b ∗ u will also
be in Lp(Rn).
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• Commutativity:
b ∗ u = u ∗ b

• Associativity:
b ∗ (u ∗ v) = (b ∗ u) ∗ v

• Distributivity:
b ∗ (u + v) = b ∗ u + b ∗ v

• Associativity with scalar multiplication:

λ(b ∗ u) = λb ∗ u = b ∗ (λu)
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The convolution b ∗ u with a kernel b of total mass 1 can be
interpreted as a blurring operation.

Example: Gaussian blur (isotropic)

* =

Example: Motion blur for diagonal motion (anisotropic)

* =
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The idea is that you observe an image f , which results from u to be
blurred and contaminated with Gaussian noise. Thus, a useful model
to recover u is to use an L2 distance in the data term. As a
regularizer, we choose TV again.

TV deblurring

Given an image f which is noisy and blurred with blur kernel b. In
order to recover the original u, we solve

argmin
u∈L2(Ω)

[∫
Ω

|∇u|2 +
1

2λ

∫
Ω

(b ∗ u − f )2 dx
]
.
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We already know how to compute derivatives for the common
regularizers. Thus, we only need the derivative for the new data term.

Proposition

Let E(u) :=
∫

Ω
(b ∗ u − f )2. Then the Gâteaux derivative of E is given

by

δE(u; h) =

∫
Ω

[
2b̄ ∗ (b ∗ u − f )

]
h dx ,

where b̄ is the kernel adjoint to b defined by b̄(x) = b(−x).

For the proof, just start with computing the Gâteaux derivative as
usual. At some point, you will need to “shift” a convolution away from
h, similar as we shifted a derivative for (3.16) with Gauss theorem.
For this, you need to make use of the fact that convolution with b̄ is
“adjoint” to convolution with b, which means that∫

Ω

(b̄ ∗ g)h dx =

∫
Ω

g(b ∗ h) dx .

Try to proof this as an exercise.
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Original Blurred Solution

Of course, fine details removed by the blurring process are forever
lost and cannot be recovered. However, we can reconstruct a sharper
image and the location of image edges.
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Original Blurred Solution

31
∫



Examples
∫ x
0 Linear Inverse Problems

∫ x
0 Bastian Goldlücke
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Proposition

Let E(u) :=
∫

Ω
(Au − f )2. Then the Gâteaux derivative of E is given by

δE(u; h) =

∫
Ω

[2A∗(Au − f )] h dx ,

where A∗ is the adjoint operator of A, i.e.

〈u,A∗v〉 = 〈Au, v〉 for all u, v ∈ L2(Ω).

• For the proof, just start with the definition of the Gâteaux
derivative as usual. Use the defining equation for A∗ to “shift” the
operator A away from h.

• Note that this shows that the adjoint of a convolution operation is
the convolution with the adjoint kernel.
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• Variational calculus deals with functionals on infinite-dimensional
vector spaces.

• Minima are characterized by the variational principle, which leads
to the Euler-Lagrange equation for a large class of functionals.

• The left-hand side of the Euler-Lagrange equation yields the
Fréchet derivative of the functional.

• We have discussed the classical examples: denoising,
inpatinting, deblurring and general linear inverse problems.
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• How can we compute solution to the Euler-Lagrange equation?
• The regularizer of the ROF functional is∫

Ω

|∇u|2 dx ,

which requires u to be differentiable. Yet, we are looking for
minimizers in L2(Ω). It is necessary to generalize the definition of
the regularizer.

• The total variation is not a differentiable functional, so the
variational principle is not applicable. We need a theory for
convex, but not differentiable functionals.
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